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Abstract
Laptop computers are increasingly being used as recording devices
to capture meetings, interviews, and lectures using the laptop’s lo-
cal microphone. In these scenarios, the user frequently also uses
the same laptop to make notes. Because of the close proximity of
the laptop’s microphone to its keyboard, the captured speech sig-
nal is significantly corrupted by the impulsive sounds the user’s
keystrokes generate. In this paper we propose an algorithm to au-
tomatically detect and remove keystrokes from a recorded speech
signal. The detection and removal stages both operate by exploit-
ing the natural correlations present in speech signals, but do so in
different ways. The proposed algorithm is computationally effi-
cient, requires no user-specific training or enrollment, and results
in significantly enhanced speech. The proposed keystroke removal
algorithm was evaluated through user listening tests and speech
recognition experiments on speech recordings made in a realistic
environment.
Index Terms: speech enhancement, impulsive noise, keystroke
removal.

1. Introduction
Laptop computers are increasingly being used as recording de-
vices to capture meetings, interviews, and lectures. In such sce-
narios, the recording is typically done using the laptop’s local mi-
crophone, as it is often not feasible to equip the lecturer or meet-
ing participants with close-talking microphones. The user fre-
quently also uses the same laptop to make notes. Because of the
close proximity of the laptop’s microphone to the keyboard and
the significant distance between the laptop and the speaker being
recorded, the captured speech signal is significantly corrupted by
the sounds the user’s keystrokes generate. As a result, listening
to the recorded speech can be a very unpleasant experience. The
presence of keystrokes in the signal also has a detrimental effect on
any subsequent processing, such as automatic speech recognition
or stationary noise suppression.

The enhancement of keystroke-corrupted speech can be viewed
as a special case of the detection and removal of impulsive noise.
There have been several algorithms proposed in the literature for
this purpose. Many algorithms in the literature model impulsive
noise using heavy-tailed non-Gaussian distributions, e.g. [1, 2].
In [3], a HMM-based detection scheme is proposed, an approach
also taken by [4]. In [5], impulsive noises in car environment are
detected using the Teager Energy Operator. To remove impulsive
noise, a modified median filter is used in [6], while a Bernoulli-
Gaussian process model is used in [3]. However, these algorithms
target improved speech recognition performance, not perceptual
quality.
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In this paper, we present novel algorithms for the detection and
oval of typed keystrokes in recorded speech. The proposed al-
thms require no training or enrollment on the part of the user,
eralize to unseen deployment environments and laptops, and
computationally efficient. The remainder of this paper is as fol-
s: We present the proposed detection and removal algorithms
ections 3 and 4, respectively. The evaluation of the proposed
rithms is described in Section 5 and some conclusions are pre-
ed in Section 6.

2. Closer look at Keystrokes
ause laptop keys are mechanical pushbutton switches, a typed
stroke appears in the speech signal as two closely spaced noise-
impulses, one generated by the key down action and one by the
up action. Figure 1 shows the spectrogram of a four keystrokes
uced by the same key. The spectrogram shows the significant

ability across frequency and time that even the same key can
e. Sources of this variability include the user’s typing style, the
stroke sequence, and the actual keyboard itself.
Because of this variability, traditional approaches based on
e models and stationarity assumptions, such as spectral sub-
tion, perform poorly for this task. To effectively capture key-
ke variability, a large, more complex model is required. How-
r, such a model would increase the computational complexity
he enhancement algorithm. Alternatively, a model could be
ed or adapted to a specific user. However, we viewed such
training as undesirable, and sought a solution that would per-
well “out of the box”. Because of these factors, we opted to

ue an algorithm that does not rely on an explicit model of the
e, but rather exploits well-known properties of speech.

Effect of keystrokes on speech signals

rder to systematically evaluate the effect that keystrokes have
peech signals we digitally mixed clean speech utterances with
ences of keystrokes at SNRs typical of the target applications.
resulting keystroke-corrupted utterances were processed by
tral subtraction using full a priori knowledge of the noise.

m these enhanced magnitudes, two output waveforms were gen-
ed, one which used the phase directly from the noise-corrupted
ch, and one which used the phase from the clean speech signal.

pirically, we found that these two signals were perceptually in-
inguishable. From this, we concluded that a keystroke removal
rithm should concentrate primarily on enhancing the spectral
nitudes of the keystroke-corrupted speech.

3. Detection of Keystrokes in Speech
his section, we propose a keystroke detection algorithm that
loits the local smoothness in speech signals present across time.

September 17-21, Pittsburgh, Pennsylvania



Figure 1: Variability of Key-Strokes

3.1. Unsupervised keystroke detection (UKD)

Each speech utterance s(n) is segmented into 20 ms frames with
10 ms overlap using a short-time Fourier transform (STFT). We
define the magnitude of each time-frequency component of the ut-
terance as S(k, t) where t represents the frame index and k rep-
resents the spectral index. S(t) represents a vector of all spectral
components of frame t. We assume that the signal in each subband
follows the following linear predictive model

S(k, t) =

M

m=1

αkmS(k, t − τm) + V (k, t), (1)

where, τ = {τ1, . . . , τM} defines the frames used to predict
the current frame, αk = {αk1, . . . , αkM} are the weights ap-
plied to these frames, and V (t, k) is zero-mean Gaussian noise,
i.e. V (t, k) ∼ N (V (t, k); 0, σ2

tk). Thus, we can write

p(S(k, t)|S(k, t − τ1), . . . , S(k, t − τM )) =

N (S(k, t);

M

m=1

αkmS(k, t − τm), σ2
tk). (2)

If we assume that the frequency components in a given frame
are independent, the joint probability of the frame can be written
as p(S(t)) = k p(S(k, t)). Thus, the conditional log-likelihood
Ft of the current frame S(t) given the neighboring frames defined
by τ is

Ft = log
k

p(S(k, t)|S(k, t − τ1), . . . , S(k, t − τM )) (3)

=
k

log {p(S(k, t)|S(k, t − τ1), . . . , S(k, t − τM ))} (4)

= −1

2
k

1

σ2
tk

S(k, t) −
M

m=1

αkmS(k, t − τm)

2

+ Ctk

(5)

where Ctk is a constant. Thus, Ft measures the likelihood that
frame t can be predicted by its neighbors. A frame is classified
as a keystroke if Ft < T , where T is an appropriately chosen
threshold. Empirically, we have found that keystrokes typically
last three frames. As a result, we set τ = {−2, 2}. In addition,
we use αkm = 1/M , and estimate the variance in Eq. (1) simply
as σ2

tk = 1
M m(S(k, t − τm))2.

3.2. Event-constrained keystroke detection (EKD)

We can make the detection algorithm more robust by exploiting in-
formation available from the laptop itself. When a key is pressed,
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operating system (OS) generates a key-down event. Similarly,
n a key is released, a key-up event is generated. Unfortunately,
e is usually a significant delay between the actual physical
nt and the time the OS generates the event. This delay is highly
redictable and varies with the type of scheduling used by the
number of active processes, and a number of other factors. In

e of this, we can incorporate the use of OS timestamps into the
stroke detection algorithm described in Section 3.1.
Event-constrained keystroke detection is performed by search-
for both the key-down and the key-up events in the audio signal
every key-down event received by the operating system. We
e found this to be a more robust approach than searching for
key-down and key-up events independently. Thus, for each re-
ed key-down time stamp p, the algorithm operates as follows:

1. Find the frame tp corresponding to system clock time p

2. Define a search region Θp as all frames between tp−1 + l
(tp−1 is the previous time stamp) and the current time stamp
tp.

3. Find t̂D = argmin
t

{Ft, ∀ t ∈ Θp}, classify frames ΨD =

{t̂D − l, . . . , t̂D + l} as keystroke-corrupted frames corre-
sponding to the key-down action.

4. Find t̂U = argmin
t

{Ft, ∀ t ∈ Θp, t /∈ ΨD}, classify

frames ΨU = {t̂U − l, . . . , t̂U + l} as keystroke-corrupted
frames corresponding to the key-up action.

We have found that because keystrokes typically last three
es, setting l = 1 gives good performance. We note that by in-
orating the OS time stamps into the keystroke detection algo-

m, we have removed the necessity for a threshold in the detec-
process, while also significantly reducing the chance of false

ms in detection.

4. Removal of Keystrokes From Speech
stated in Section 2, we do not want our keystroke removal al-
thm to rely on a prior model of keystrokes. We instead employ
nhancement scheme that uses a prior model of speech. Specif-
ly, we take a “missing feature” approach to keystroke removal.
issing feature methods, e.g. [7], components of log spectral

ure vectors with a low local SNR are removed and replaced
new estimates generated using data imputation techniques.

One of the main difficulties in missing feature methods is de-
ining which spectral components to remove. In this work, be-

se keystrokes are spectrally flat and keystroke-corrupted frames
e a low local SNR due to the proximity of the microphone to
laptop keyboard, we assume that all spectral components of a
stroke-corrupted frame are missing. While Figure 1 shows that
mption is not strictly true, it considerably simplifies the miss-
feature problem. In essence, it allows us to recast the keystroke
oval problem to one of reconstructing a sequence of frames

its neighbors.

MAP estimation of keystroke-corrupted frames

employ the correlation-based reconstruction technique proposed
7]. In this algorithm, a sequence of log-spectral vectors of a
ch utterance is assumed to be a sample of a stationary Gaussian
om process. The statistical parameters of this process, its
n and covariance, represent prior knowledge about clean speech,
are estimated from an uncorrupted training corpus. By mod-
g the sequence of vectors, we estimate covariances not just



across frequency, but across time as well. Furthermore, because
we assume the process is stationary, the estimated mean vector is
independent of time and the covariance between any two compo-
nents is only a function of the difference in time between them. In
order for the data to better fit the Gaussian assumption, we perform
reconstruction on log-magnitude spectra rather than on the magni-
tude spectra directly. Thus, we define X(t) = log(S(t)), where
S(t) represents the magnitude spectrum as before.

We now define Xo and Xm to be vectors of clean (“observed”)
and keystroke-corrupted (“missing”) speech, respectively. Under
the Gaussian process assumption, we can now express the MAP
estimate of Xm as

X̂m = E[Xm|Xo] = μm + ΣmoΣ
−1
oo (Xo − μo) (6)

where Σmo and Σoo are the appropriate partitions of the covari-
ance matrix learned in training. Thus, for each keystroke-corrupted
frame in ΨD , the keystroke removal algorithm operates as follows.

1. Set
Xm = [X(t̂D − l)T . . . X(t̂D + l)T ]T

Xo = [X(t̂D − l − 1)T X(t̂D + l + 1)T ]T

2. Compute the MAP estimate X̂m according to Eq. (6).

3. Repeat steps 1-2 for ΨU

The experimental setup and results obtained using this algo-
rithm are presented in Section 5. An analysis of these results high-
lighted some shortcomings in the algorithm for the target applica-
tion. Most notably, the large dimensionality of the vectors required
computationally expensive matrix operations to be performed and
the mismatch in noise and reverberation between the training and
test environments resulted in estimation errors which produced ar-
tifacts in the resulting audio signal.
4.2. Improved MAP estimation using locality constraints

We propose to improve the performance of the MAP estimation
algorithm by imposing locality constraints on both the mean and
the covariance in the Gaussian model used. These improvements
enable us to improve both the computational efficiency and the
robustness of the keystroke removal algorithm.
4.2.1. Reconstruction using a block diagonal covariance

In the log spectral domain, each frame consists of N components,
where 2N is the DFT size. Consequently, Σoo is cN × cN , where
c is the size of the context window, i.e. the number of frames
of observed speech used to estimate the missing frames. Typi-
cally, N ≥ 128 and c ≥ 2, making the matrix operations required
in Eq. (6) computationally expensive. To reduce the complexity
of the operations, we assume that covariance matrix has a block-
diagonal structure, preserving only local correlations. If we use a
block size B, then we need to compute the inverse of N/B matri-
ces of size cB× cB thus reducing the number of computations. In
our experiments we have found that setting B = 5 works reason-
ably well.

Using a block-diagonal covariance structure also improves the
environmental robustness for farfield speech. There can be long-
span correlations across time and frequency in close-talking speech.
However, these correlations can be significantly weaker in farfield
audio. This mismatch results in reconstruction errors, producing
artifacts in the resulting audio. By using a block-diagonal struc-
ture, we rely only on short-span correlations, making the recon-
struction more robust in unseen farfield conditions. To incorporate
this change into the MAP estimation algorithm, the single MAP
estimation for the keystroke-corrupted frames is simply replaced
with multiple estimations, one for each block in the covariance
matrix.
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HP Laptop Dell Laptop

Speaker

58’’

56.5’’
78’’

            PC
Toshiba Tablet

ure 2: Recording setup used in experiments. The height of the
aker was 52′′. The laptops were placed on a conference room
e.

2. Locally adapting the Gaussian mean

Gaussian model described in Section 4.1 uses a single mean
tor to represent all speech. This model, though weak, worked
onably well in [7] because the training and test data were both

a close-talking microphone, and the algorithm operated on
othed spectral vectors, i.e. log mel spectra. Because our al-

ithm reconstructs the full magnitude spectrum rather than the
spectrum, and operates on farfield audio, there is considerably
e variation in the observed features. As a result, using a single
trained mean vector in the MAP estimation process results in
ificant reconstruction artifacts.
To improve the model’s accuracy, but still keep the compu-
nal cost low, we maintain the use of a single mean vector
locally adapt its value. To do so, we utilize a linear pre-
ive framework similar to that proposed for detection in Sec-
3. The mean vector is estimated as a linear combination of

neighboring clean frames surrounding the keystroke-corrupted
ment. If we define μk to be the kth spectral component of the
n vector μ, we define the adapted value of this component as
= τ∈Γ βτX(t − τ, k) where Γ defines the indices of the
hboring clean frames, and βτ is the weight applied to the ob-
ation at time t − τ . Because the mean is computed online, it
easily adapt to different environmental conditions. In our ex-
ments we have found that setting Γ to the indices of frames in
and βτ = 1/|Γ| resulted in good performance.

5. Experimental Setup and Results
rder to evaluate the proposed keystroke removal algorithm, we
ected a corpus of keystroke-corrupted speech data in a confer-
e room environment. Three different laptops (Dell, HP, Toshiba)
e placed on a conference room table in the configuration shown
igure 2. A loudspeaker located across the table from the lap-
was used to play utterances from the WSJ0 test set. Users

e asked to take notes on each laptop while the audio from the
aker was being recorded using the laptop’s local microphone.
roximately one-third of the test set was recorded on each lap-
This recording session was then repeated in the same envi-

ment without any typing on the laptops. This yielded two cor-
a of 300 utterances, one that was corrupted by keystrokes (KS),

one that was clean (CL). Note that both corpora contained
eld speech data. We trained the means and covariances using
WSJ0 SI84 training set.
The proposed keystroke removal algorithm was then performed
ll utterances of the KS corpus. Figure 3 shows a spectrogram
ne utterance before and after processing. In order to evalu-



(a) (b)

Figure 3: Spectrograms of a keystroke-corrupted utterance (a) be-
fore processing and (b) after the proposed algorithm has been ap-
plied.

ate the performance, user listening tests were conducted using a
differential mean opinion score (DMOS) criterion. Test subjects
were asked to make A/B comparisons of a series of utterances
processed using different algorithms, using the criteria shown in
Table 1. The ordering of the utterances presented to each user
was randomized. Pairwise comparisons were made across three
algorithms: the unprocessed keystroke-corrupted speech (KS), the
MAP reconstruction algorithm described in Section 4.1 (MAP),
and the locally-constrained MAP reconstruction algorithm pro-
posed in Section 4.2 (LMAP).

The results of the DMOS tests averaged over 36 subjects are
shown in Table 2. As the results indicate, users showed a strong
preference for unprocessed KS utterances over the enhanced MAP
utterances. This indicates that MAP generates artifacts that are
more annoying to users than the keystrokes themselves. On the
other hand, users showed a strong preference for the LMAP utter-
ances compared to the unprocessed KS utterances, with an average
DMOS score of 1.77. This demonstrates that the proposed locality
constraints significantly improve the reconstruction algorithm and
create minimal artifacts or distortion. Finally, we also confirmed
that users preferred KS-LMAP over KS-MAP, which is expected
given the previous results.

We also performed speech recognitions experiments on the
processed LMAP utterances. The HTK speech recognizer was
trained using the WSJ0 SI84 training set (close-talking speech).
The resulting HMMs were then adapted via supervised MLLR us-
ing 100 utterances of farfield speech from the CL corpus. Speech
recognition was then performed on the remaining 200 utterances
from CL. Because this data was not corrupted by keystrokes, this
performance represents the upper bound on recognition perfor-
mance. Recognition was then performed on the same set of 200
utterances from the KS and KS-LMAP corpora.

The CL corpus obtained a Word Error Rate (WER) of 66.2%.
This is extremely poor baseline performance for this task, but demon-
strates the difficulty of recognizing farfield audio in a real environ-
ment with suboptimal microphone placement, especially when the
acoustic models are trained from close-talking data. The WER
obtained on the KS speech is 81.6%, showing that keystrokes de-
grade recognition performance significantly. The LMAP corpus,
processed by our keystroke removal algorithm, obtained a WER
of 76.6%. Thus, the proposed algorithm was able to close the gap
in performance between KS and CL by 32%.
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Table 1: DMOS Evaluation Criteria
Score A vs. B

3 B much better than A
2 B somewhat better than A
1 B slightly better than A
0 B nearly identical to A
-1 B slightly worse than A
-2 B somewhat worse than A
-3 B much worse than A

Table 2: DMOS Evaluation Results
KS vs. MAP KS vs. LMAP MAP vs. LMAP

ean -1.9231 1.7713 2.0128
STD 0.4523 0.3402 0.3203

6. Conclusions and Future Work
is paper we have proposed effective and efficient algorithms to
ct and remove keystroke noise from speech signals. The pro-

ed removal algorithm aims to leverage the natural correlations
peech. Further, the algorithm is devoid of any thresholds that
ht hinder its generalization capabilities and does not require
e statistics for keystroke removal. Although we have presented
lgorithm tailored to the keystroke removal application, we be-
e it can be applied to any impulsive denoising problem with
e or no modification.
In the future, we plan on investigating others ways of enforc-
local continuity constraints within the proposed framework.
ddition, the algorithm presented in this paper assumes that

strokes corrupt all frequency components of the speech signal.
ever, as Figure 1 shows, there are spectral components that are
ct unaffected by keystrokes. We plan to improve the keystroke
oval algorithm by utilizing these uncorrupted components.
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