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Abstract

In this paper we propose the use of infinite models for the cluster-
ing of speakers. Speaker segmentation is obtained trough a Dirich-
let Process Mixture (DPM) model which can be interpreted as a
flexible model with an infinite a priori number of components.
Learning is based on a Variational Bayesian approximation of the
infinite sequence. DPM model is compared with fixed prior sys-
tems learned by ML/BIC, MAP/BIC and a Variational Bayesian
method. Experiments are run on a speaker clustering task on the
NIST-96 Broadcast News database.
Index Terms: speaker clustering, variational bayesian methods,
Dirichlet process.

1. Introduction
Speaker clustering is a main task in many audio processing sys-
tems. Most common approaches are based on statistical models in
which data are represented by an ergodic HMM (each state repre-
sents a speaker) with emission probability modeled by GMM ([1]).
The actual number of speaker is generally not known and must be
estimated from data using a model complexity criterion (e.g. BIC
[6] or Variational free energy [14]).

We propose here the use of a flexible model based on the
Dirichlet Process Mixture (DPM). DPM can be interpreted as a
bayesian model with an a priori infinite number of components.
The learning algorithm infers the actual number of components
out of the initial infinite number. In other words our prior model
is an ergodic HMM with an unbounded number of states (speak-
ers) emitting according to a GMM with an unbounded number of
gaussian components.

In general speaker clustering situations, number of speakers is
not known and can considerably change from file to file. Further-
more in the same file, amount of data available per speaker can
be very heterogeneous (e.g. many speakers provide just few min-
utes of speech). In those cases we would like to represent speakers
with a variable number of gaussian components proportional to
the amount of available data. This issue was addressed for exam-
ple in [13] where a complex model is used if enough data from
a given speaker is provided and a simpler model is used if only
poor amount of data is available. Another example of adaptative
model was proposed in [18] where number of states ’evolve’ with
the data. DPM provides an elegant framework for handling this
problem because the initial number of speakers (i.e. HMM states)
and gaussian components per speaker is infinite and final complex-
ity is inferred during the training according to statistical properties
of data.

Dirichlet Process Mixture Models have been introduced in the
framework of non-parametric Bayesian statistics in [2] and [3] but
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in recent years efficient training techniques have been pro-
d and they have been applied to many machine learning, lan-
e modeling and image processing problems [7]. We describe
a first investigation in the field of audio processing.

The paper is organized as follows: in sections 2 and 3 we in-
uce basic concepts of Dirichlet Process and Dirichlet Process
ture, in section 4 we discuss learning algorithms, in section 5
escribe a speaker clustering model based on DPM and finally
iscuss results on Broadcast News data.

2. Dirichlet process
irichlet Process designated as DP (G0, α) is a measure on
sures, i.e. a stochastic process, and is parametrized using a
ability measure G0 known as base measure and scalar value
he original definition proposed in [2] says that a measure G

istributed according to a Dirichlet process DP (G0, α) if for
atural numbers k and measurable partition of an ensemble
, ..., Bk},

(B1), ..., G(Bk)) ∼ Dir(αG0(B1), ...., αG0(Bk)) (1)

re Dir designates a Dirichlet distribution. The general defi-
n provided in equation (1) is not very self explicative and DP
tering properties for infinite series are not easily deductible

definition. We refer to the review done in [7] which gives
e different representations of the DP. A DP has inherently
e clustering properties. Let us consider N random variables
..., yN} drawn according to G ∼ DP (G0, α) and let us com-
the probability of sample yN+1 conditioned on the previous

ples. It can be shown [8] that:

(yN+1|y1, ..., yN) ∝ α G0(yN+1) +

NX

i=i

δyi
(yN+1) (2)

re G0 is the base measure and δa(b) is a function equal to
if a = b and zero elsewhere. This is the so called Polya
scheme [8]. Let us designate the values of variables yn with
..., cN}, expression (2) can be rewritten as:

yN+1 = ci with probability
#(j : yj = ci)

N + α
(3)

yN+1 = cnew, cnew ∼ G0 with probability
α

N + α
(4)

ere #(j : yj = ci) is the number of time yj is equal to ci.
equation (3) we notice that the probability of the observation

1 = ci is proportional to the number of times the value ci

seen before i.e., the probability of seeing a value we have seen
re is higher if this value appeared already many times. Fur-
more there is always a probability α/(N + α) to explore new
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values that have not been seen before (equation 4). In a speaker
clustering task this corresponds to adding a new speaker to the
model or a new gaussian component to a speaker model. The ca-
pacity of generating new values is regulated by the value of α; if
α is comparable to N there is a high probability of exploring new
speaker (or speaker components) rather than clustering in previous
ones.

According to expression (2) a DP can be interpreted as a mix-
ture model with N fixed classes and one component responsible
for creating new classes. In other words the model automatically
adjusts the number of classes increasing progressively the number
of components.

Another important representation of the Dirichlet Process is
the Stick breaking construction ([10]). Let us assume two se-
quences of independent random variables vi and yi generated as:

(vi)
∞

i=1 ∼ Beta(1, α) (yi)
∞

i=1 ∼ G0 (5)

where Beta(.) designates a Beta distribution. The Dirichlet Pro-
cess G ∼ DP (α, G0) can be rewritten as:

G =

∞X

i=1

πiδyi
with πi = vi

i−1Y

j=1

(1 − vj) (6)

Representation (6) is called stick breaking representation (desig-
nated as Stick(α)) . It is easy to verify that

P
∞

k=1 πk = 1 like
in mixture models. Here an important inconvenient of G can be
noticed: a measure drawn from a DP is discrete with probability
one even if its base measure is continuous. In fact G is composed
of an infinite sum of δa(b) functions which are equal to 1 only if
a = b; in other words the support of G is discrete. We explain in
section 3 how to overcome this problem.

Another useful representation is the infinite limit of finite mix-
ture models. We will use it in the following for deriving the
speaker clustering model. Let us consider a mixture model with
L components i.e. G =

PL

i=1 πipi where π = {π1, ...., πL} are
mixing proportions and pi is a base measure (e.g. a gaussian distri-
bution) . Let us set a symmetric prior over π as a Dirichlet distribu-
tion with hyperparameters {α0/L, ..., α0/L}. If the limit L → ∞
is considered then the Dirichlet prior reduces to a Stick distribution
Stick(α) (see [11] for details) and model G =

PL

i=1 πipi coin-
cides with model in equation (6). Limit of finite models is further
discussed in next section.

3. Dirichlet process mixture
The discreteness of DP is a serious drawback if the model must
handle continuous variables. It can be shown that a DP is dis-
crete with probability one on the set of Borel probability measures
even if G0 is continuous [11]. A simple way for overcoming this
problem is using the DP as non-parametric prior distribution in a
hierarchical bayesian framework [3]. This is achieved by drawing
a measure G ∼ DP (α, G0) and assuming that G is a prior dis-
tribution for model parameters θn i.e., θn ∼ G. In other words
we add a level of hierarchy and we assume that model parameters
have a distribution that follows a DP obtaining a continuous distri-
bution. In mathematical terms, a data set Yn is modeled as a DPM
if :

G|α0, G0 ∼ DP (α, G0) (7)

θn|G ∼ G (8)

Yn|θn ∼ p(Yn|θn) (9)
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e distribution p(.) is continuous, the model consists in a con-
tion of a degenerate density G with a continuous function p(.)
is a continuous distribution. This model is referred as Dirich-
rocess Mixture (DPM) [7]. As example, we can rewrite a

mon Gaussian Mixture Model with an infinite number of com-
nts in the same formalism of equations (7-9) using the Stick
king representation of equation (5). Let us introduce an hidden
able Xn that designates which component emitted observation
Data follows the process:

Vi|α ∼ Beta(1, α), i = {1, 2, ...,∞} (10)

θi|G0 ∼ G0 i = {1, 2, ...,∞} (11)

For the nth observation Yn

Xn|{V1, V2, ...} ∼ Mult(π(V )) (12)

Yn|Xn ∼ p(yn|θXn) (13)

re Mult(π(V )) designates a multinomial distribution with pa-
eters π(V (i)) defined as in equation 6 and Vi can be interpre-

as an hidden variable.
An infinite sequence of parameters θi is drawn from the base
sure G0 (expression (11)) together with probabilities Vi (ex-
sion (10)). For each observation Yn an hidden variable Xn

awn from a multinomial distribution defined by the set of Vi

ression (12)). Finally the parametric likelihood p(yn|θxn) is
puted according to the parameter θxn (expression (13)). In
of a GMM, distribution p(.) is a gaussian distribution with

meters θi = {μi, Σi} where μi and Σi are mean vector and
riance matrix. In bayesian terms this model can be interpreted
model with an a priori distribution composed of an infinite
ber of components. Model grows according to statistical prop-
s and amount of data.
Likelihood of an observation Yn conditioned on Xn can be
ten as:

p(Yn|Xn, {θi}) =

∞Y

i=1

p(Yn|θXn)1[Xn=i] (14)

re i represent the component number (out of the possible infi-
components) and the function 1[a = b] is equal to 1 if a = b
zero otherwise.

4. Inference in a DPM
n if DPM defines an infinite prior model, processing of finite
unt of data will produce a finite posterior model. In fact, if N
e data set size, posterior model will have a maximum number
omponents equal to N , i.e. one component per sample. The
tering algorithm should learn posterior probability over DPM
ther with model complexity i.e. the number of components.
Monte Carlo Markov Chains sampling methods are probably

ost popular method for making inference in models based on
and DPM. Anyway sampling methods are generally slow and
ibitive when the amount of data is large like in applications
involve the processing of many hours of speech . For this

on we consider here a deterministic approximation based on a
ational Bayesian method as proposed in [12].
Variational Bayesian (VB) methods are suitable in those cases
hich the complexity of the model must be determined (e.g.

number of speaker in a file and the number of components
speaker in the model) (see [16]). The well known Bayesian
rmation Criterion is a special case of VB model selection. In



our previous work ([14]) we investigated the use of VB learning
in the case of a model with fixed a priori number of components.
The use of DPM as non-parametric prior extends somehow the
flexibility of the model that use infinite prior.

Variational Bayesian methods approximate real posterior dis-
tributions over parameters θ and hidden variables X with a distri-
bution q(X, θ)(see [12]). A simplified form for q(X, θ) is chosen
on the basis of a mean-field approximation that considers indepen-
dence assumption between elements of X and θ i.e.

q(X, θ) =
IY

i=1

q(Xi)
JY

j=1

q(θj) (15)

where I is the number of hidden variables and J is the num-
ber of parameters. If the parametric form for q(.) belongs to the
conjugate-exponential family, a coordinate ascent algorithm can
be derived for iteratively optimizing q(X, θ) (for details see [12]).
Actually, the condition on the form of q(.) is not particularly re-
strictive, in fact a large variety of models satisfy this condition (e.g.
HMM, mixture models, state space models, etc.).

For example, in model described by equations (10-13) poste-
rior distributions over parameters θ and hidden variables X and V
will factorize as:

q(V, X, θ) =
∞Y

i=1

q(Vi)
NY

n=1

q(Xn)
NY

n=1

q(θn) (16)

where q(Vi) is a Beta distribution, q(Xn) is a multinomial dis-
tribution and q(θn) is a function of the exponential family. In ex-
pression (16) the product

Q
∞

i=1 q(Vi) has an infinite number of
terms. To handle this infinite series we choose the approximation
proposed in [12] in which the infinite posterior is truncated up to a
certain value T i.e., the posterior distribution q(Vi) = 0 for i > T .
Some important remarks must be done on this approximation. First
of all, the prior distribution is still infinite, only the posterior dis-
tribution is truncated i.e. the model can grow up only to number of
components equal to T . We are not imposing the number of com-
ponents of the model but just its maximum number. This choice is
not that difficult if the amount of training observations N is known:
the model cannot have a number of components larger than N af-
ter the clustering. A reasonable choice for T is N , but all values
T > N will result in a maximum of N components.

It is interesting to investigate what happens when the number
of components is exactly equal to N ; if we suppose the base mea-
sure G0 to be gaussian, the model results in the sum of N gaus-
sians; this is equivalent to the Parzen window estimation method
which consists of estimating probability of unseen data with a sum
of gaussian kernels equal in number to the training data.

5. Speaker clustering based on DPM
In this section we present a DPM based model for speaker clus-
tering purposes as limit case of a finite model. The most pop-
ular approach for speaker clustering uses an ergodic HMM with
emission probability modeled by a GMM. As long as the current
speaker number is not known, it must be estimated from data using
a model selection criterion (e.g. BIC, Bayesian integral, etc.). This
is sometimes achieved introducing a large number of initial states
(i.e. speakers) and merging them successively. The approach we
use here is completely different. The prior model is infinite i.e.
an infinite number of state (speakers) that emit according to a mix-
ture model with an infinite number or components. Without loss of
generality let us define a finite model for the ergodic HMM/GMM
as :

P (O) =
SY

i=1

ai

MY

j=1

cijP (O|μij , Σij) (17)
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ere O is an observation ai is the weight for speaker i, cij is
weight for gaussian component j in speaker i, μij and Σij

mean and covariance matrix. S and M are fixed number of
kers and number of gaussian mixture components per speaker.
assume here that the transition from one speaker to another
t regulated by a Markov process; this reduce the HMM to a

ture model and allows the model written as in equation (17).
us now impose a prior distribution over parameters in (17).
use Dirichlet distributions for ai and cij and Normal-Wishart
ibutions for joint distribution of μij and Σij i.e.

P (aj) = Dir(λa 0/S) P (cij) = Dir(λc 0/M)

P (μij |Γij) = N(ρ0, ξ0Γij) P (Γij) = W (ν0, Φ0) (18)

ere Dir(), N(), W () are respectively Dirichlet, Normal,
hart distributions and {λa 0, λc 0, ρ0, ξ0, ν0, Φ0} are hyperpa-
eters as in [17]. The correspondent DPM model with infi-
number of components is obtained taking the limit S →

and M → ∞. In the limit case Dirichlet distributions
(λa 0/S) and Dir(λc 0/M) become Stick breaking distri-
ons Stick(λa 0) and Stick(λc 0) over an infinite number of
kers and components per speaker. Learning can be done ap-
ng the variational algorithm for truncated posterior distribu-
s briefly described in section 4 (for details see [12]).

6. Experiments
compare the infinite DPM model with three different systems:
assical ML/BIC system (Maximum Likelihood for the train-
BIC for the model selection system) referred as System I, a

P/BIC system (Maximum a Posteriori for the training, BIC for
model selection system) referred as System II, a Variational
esian system which simultaneously performs the training and
model selection (see [14] for a description) referred as sys-
III. We run experiments on the evaluation data set NIST-1996
-4. It consists of 4 recordings of half an hour long in which

ch and non-speech events occur together (music, noise, etc.).
files are processed in order to obtain 12 LPCC coefficients.
ose files amount of speech provided by different speakers is
heterogeneous making unsupervised clustering difficult; here

es the need for a flexible model.
The training procedure uses the following algorithm: the sys-
is initialized with a large number of speakers Minitial then

mal parameters are learned using criteria VB, ML and MAP.
al speaker number is then reduced progressively from Minitial

and parameter learning is done for each intermediate num-
of speakers. Optimal number of speakers is estimated scor-
the different models with VB free energy for system III and
BIC criterion for systems I and II. On the other hand in the
based system we just have to provide the truncation order T

the posterior distribution: the model will grow automatically
o the maximum number of components imposed by the order
e truncation. The DPM is learned as well with a Variational

esian approximation as system III. However system III has a
dimension prior model while DPM has an infinite distribu-

as prior model. Details about estimation formula for the ML
VB learning applied to model (17) can be found in [15]. Re-
are shown in table 1 provided in terms of estimated number
eaker Nc, average cluster purity (acp), average speaker purity
) and K =

√
acp · asp (for details see [15]). Choice of prior

ibutions is done heuristically. In order to make a fair compar-
, we initialized the three Bayesian approaches (MAP,VB and

) with the same prior distributions over parameters (this does
mean that the number of prior components is the same, in fact
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Figure 1: Speaker clustering K function of the order of truncation.

in the DPM case it is infinite). The Bayesian Information Crite-
rion need a tuning factor λ in order to be really effective; we set
this tuning factor in order to obtain the best possible performance
in order to compare with the best possible BIC system.

The ML/BIC baseline is poor compared to other bayesian ap-
proaches. This is probably due to the regularization effect of the
prior distribution. On the other hand DPM is the bayesian ap-
proach that performs better both in terms of acp and asp. Consid-
ering that MAP is a special case of VB (see [14]) and that DPM is
an extension of VB to a more flexible model with an infinite num-
ber of prior distributions, results are not surprising. On file 3 all the
systems perform almost the same while the largest improvements
are obtained on files 2 (15% relative) and 4 (17% relative). File 4
is the file with the lowest amount of data per speaker (22 speak-
ers for half an hour) and very heterogeneous distribution (some
speakers talk just few utterances); DPM system provides the best
performance probably because there is no priori information on
the number of components per speaker which are automatically
inferred by the system allowing more model flexibility. We verify
in the DPM system that number of gaussian component is propor-
tional to the amount of data provided per speaker.

The robustness of the system to the level of truncation is inves-
tiagated as well; figure 1 plots speaker clustering score K function
of the truncation level T in the 4 files. If the truncation level is
large enough (more than 25), the clustering score does not change
significantly. Small fluctuation are seen due to different local min-
ima. This means that in real data problems with finite amount of
data the truncation algorithm can be efficiently applied.

7. Conclusion and Discussions
In this paper we have presented and discussed a first system for
speaker clustering based on a Mixture of Dirichlet Process as flex-
ible model with an unbounded number of prior components. The-
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ical bases of DPM model were presented and discussed. Ex-
ments on Broadcast news data show interesting improvements
future work we would like to consider different learning ap-
ches for the DPM models like Expectation-Propagation and
paring results with the current variational truncated method.
ustness with respect to prior distribution must be addressed as
l.
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File File 1 File 2 File 3 File 4
Nc acp asp K Nc acp asp K Nc acp asp K Nc acp asp K

(a) ML/BIC 10 0.80 0.86 0.83 9 0.72 0.77 0.74 15 0.77 0.83 0.80 12 0.63 0.80 0.71
(b) MAP/BIC 10 0.68 0.71 0.87 9 0.70 0.78 0.74 15 0.76 0.83 0.80 21 0.75 0.64 0.69

(c) VB 12 0.85 0.89 0.87 14 0.84 0.81 0.82 14 0.75 0.90 0.82 13 0.63 0.80 0.71
(d) DPM 18 0.87 0.91 0.89 14 0.87 0.92 0.89 16 0.74 0.91 0.82 19 0.63 0.85 0.76

Table 1: Results on NIST 1996 HUB-4 evaluation test for speaker clustering
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