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Abstract
Typical speech enhancement algorithms that operate in the

Fourier domain only modify the magnitude component. It is
commonly understood that the phase component is perceptually
unimportant, and thus, it is passed directly to the output.

In recent intelligibility experiments, it has been reported
that the Short-Time Fourier Transform (STFT) phase spectrum
can provide significant intelligibility when estimated using a
window function lower in dynamic range than the typical Ham-
ming window. Motivated by this, we investigate the role of
the window function for STFT phase estimation in relation to
speech enhancement.

Using a modified STFT Analysis-Modification-Synthesis
(AMS) framework, we show that noise reduction can be
achieved by modifying the window function used to estimate
the STFT phase spectra. We demonstrate this through spec-
trogram plots and results from two objective speech quality
measures.

Index Terms: speech enhancement, phase, windowing.

1. Introduction
Typical speech enhancement algorithms, such as Spectral Sub-
traction (SS) [1] [2] or the Ephraim-Malah algorithm [3],
use short-time Fourier analysis-modification-synthesis (AMS)
framework for speech enhancement. They process the corrupt
speech signal by modifying (or correcting) the spectral mag-
nitude component only and leave the phase component un-
changed. This is due to the fact that the phase component is
traditionally considered perceptually unimportant and has been
shown not to contribute much towards speech enhancement [4].

Recently in [5, 6, 7], the relative importance of the STFT
magnitude and phase spectra, in relation to speech intelligi-
bility, has been investigated. In these studies, an Analysis-
Modification-Synthesis (AMS) framework was used to create
two types of stimuli for human listening tests, called magnitude-
only and phase-only. To create the magnitude-only stimuli, the
STFT phase spectrum was set to random values and the cor-
responding magnitude spectrum was left unmodified. A sim-
ilar procedure was used to create the phase-only stimuli, but
in this case, all of the detail in the STFT magnitude spectrum
was removed by setting each magnitude component to one and
leaving the phase spectrum unmodified. Sets of both types of
test speech were then created using analysis frame sizes rang-
ing from 16 ms to 512 ms. Subsequently, listeners were asked
to identify the content of the artificial stimuli, which gave an
identification rate score.

The experiments performed with ”phase-only” stimuli by
Lui et al [5] and Paliwal and Alsteris [6] [7] resulted in con-
flicting conclusions. In Lui’s experiments, a Hamming window
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ction was used in the estimation of the Fourier phase spec-
m. This resulted in the ”phase-only” stimuli having low in-
igibility at short window lengths (window duration of about
ms). In Paliwal and Alsteris’s experiments, a Rectangular
dow function was used in place of the Hamming window in

i’s experiments. As a result, significantly higher intelligibil-
was reported for the ”phase-only” stimuli at short window
gths. It has been suggested that while the Hamming-type of
dow functions find application in magnitude spectrum esti-

tion, their use for phase spectrum estimation results in bad
tortion.

In the aforementioned research, estimation of STFT phase
ctrum was investigated to evaluate its relative contribution
ntelligibility compared to the magnitude spectrum. The two
in conclusions from these works seem to be, 1) the Fourier
se spectrum contributes significantly to intelligibility when
g analysis frames are used and 2) significant intelligibility is
o observed from Fourier phase when a Rectangular window
ction is used during its estimation.
Earlier, Wang and Lim [4] have investigated the impor-

ce of the Fourier phase spectrum specifically in the con-
t of speech enhancement. They used an oracle-type of ex-
iment where the clean speech as well as the corresponding
sy speech was available for processing. In their investiga-
, a modified AMS framework was employed that consisted

two analysis blocks and one synthesis block. The role of
of the analysis blocks was to estimate the STFT magnitude

ctra, while the other was used for the phase spectra. This
dification allowed the signal-to-noise ratio (SNR) of the de-
ded speech feeding into each analysis block to be controlled
ependently. Hence a range of listening stimuli was created
m different combinations of magnitude and phase spectra de-
d from varying quality speech. Listening tests were then
formed using both the artificial stimuli and unmodified de-
ded speech. Subjects were asked to score the quality of the
ficial speech by matching it with degraded speech they con-
ered to be of equivalent quality. The SNR of the unmodified
ech was then defined as the equivalent SNR score.
The results of Wang and Lim’s study [4] were consistent

h previous reports [8]. At relatively small window dura-
s (approx. 50 ms), no significant improvement in equivalent
ech quality was observed when the magnitude component
s matched with a phase component computed from speech
h a higher SNR. Likewise, for analysis windows of the order
400 ms, a significant improvement in equivalent SNR was
ed. These observations are also reflected in the aforemen-
ed intelligibility tests reported by Lui et al. An important
ect of these experiments though, is the same window was
d to estimate both the magnitude and phase spectra.
From the literature, there is a consistent relationship be-
en window functions and the resulting phase spectrum. In
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the experiments where a smooth window function (Hamming,
Hanning) was used to estimate the STFT phase spectrum, the
estimate contributed little to either the intelligibility or speech
quality at short window lengths (approx. 32 ms) compared to
the STFT magnitude spectrum. In the intelligibility testing,
where a Rectangular window was used, a significant improve-
ment was observed. Motivated by this observation, we apply a
Rectangular window function to the STFT phase spectrum esti-
mation problem for speech enhancement. We further expand the
investigation and explore the role played by the dynamic range
of the window function using a range of Chebyshev windows.

2. Evaluation Framework
To evaluate the effect of using an alternative window function
to estimate the STFT phase spectrum for speech enhancement
applications, we used a modified STFT Analysis-Modification-
Synthesis (AMS) framework similar to the one proposed by
Wang and Lim [4]. We conduct here an oracle-type experiment
where we assume that the clean speech as well as the corre-
sponding noisy (or degraded) speech is available to us for pro-
cessing. A block diagram is shown in Fig.1 for reference.

Processing begins with an analysis stage in both the mag-
nitude and phase spectra estimation branches. In this stage,
the speech signal is decomposed into short-time overlapping
frames. For this work, we have chosen the frame size to be
32 ms and the frame shift to be one eighth of a frame, which is
4 ms. Here we use m to denote the index of the frame.

Following the frame-blocking step, a window function is
applied to the frames in each branch. In the magnitude spectrum
estimation branch, a Hamming window is used, while in the
phase spectrum estimation branch, wa(n) can be a Hamming,
Rectangular or a Chebyshev window. After the frames have
been windowed, we compute a STFT for each.

Before computing the Fourier transform of each length N

frame, N zeros are appended. This step minimises the potential
for time domain aliasing during resynthesis. At each frame in-
dex m, four spectra are produced from the two windowed time
frames. These include a magnitude (|Xa|) and phase (φa) spec-
trum from the frame windowed with wa(n) and a magnitude
(|Xb|) and phase (φb) spectrum from the frame windowed with
a Hamming window.

Using the magnitude spectrum |Xb| and the phase spectrum
φa corresponding to frame index m, we construct an artificial
STFT spectrum bX as shown in (1). An inverse STFT is then
computed for each complex artificial frame resulting in a new
real valued time domain frame. The new speech signal is then
synthesised by applying the overlap-add algorithm.

bX = |Xb|e
jφa (1)

3. Experiments
In these evaluations, our aim was to investigate the effect of
using different window functions to estimate the STFT phase
spectrum using an AMS based speech enhancement systems.
To do this, we performed experiments using six different win-
dow functions to estimate the phase spectra. The first of these
windows was a Rectangular window. In addition to the Rectan-
gular window, we used four different Chebyshev windows that
ranged in dynamic range from 10 dB to 40 dB in 10 dB steps
[9] and a Hamming window.

To conduct the evaluations, we used speech from the
NOIZEUS database. This database is composed of gender and
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ure 1: Block diagram of speech processing framework used
investigate the effect of alternative window functions on
ech enhancement.

netically balanced utterances [10]. The sampling rate of the
abase is 8 kHz, and includes speech that has been corrupted
ng the noise samples from the Aurora II database. The cor-
t speech on the database includes four noise levels, 0 dB,
B, 10 dB and 15 dB, and eight different noise sources, Air-
t, Babble, Car, Exhibition, Restaurant, Station, Street and
in. Out of the samples provided, we used only the clean
ples. In addition to these, a set containing artificial Gaus-

n white noise was also created.

. Spectrogram Analysis

these experiments, we performed a spectrogram analysis of
rances that have been processed by the modified AMS sys-
. Specifically, we took “sp01” from the NOIZEUS database
] and added artificial Gaussian white noise so the resulting
bal SNR was 10 dB. We then processed the resulting utter-
e in conjunction with the clean version using the modified
S system and a range of window functions for the phase

ctrum estimator. Again, a Hamming window was used in all
es to estimate the magnitude spectra. The results from these
luations can be seen in Fig.2.

. Objective Speech Quality

these experiments we estimated the quality of the processed
ech using two objective speech quality measures, Perceptual
imation of Speech Quality (PESQ) and Enhanced Modified
rk Spectral Distortion (EMBSD). The PESQ algorithm [11]
resents an aggregation of two other techniques, PAMS and
QM99. These two methods were the highest performing al-
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Figure 2: Spectrograms showing (a) clean speech (Noizeus - sp01) and (b) speech degraded with artificial Gaussian white noise at
10 dB SNR. Spectrograms are also shown for speech modified using the framework shown in Fig.1, where wa is (c) Rectangular, (d)
Hamming, (e) Cheby.40, (f) Cheby.30, (g) Cheby.20 and (h) Cheby.10.
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Figure 3: Objective speech quality results for Gaussian white noise. (a) Results using PESQ measure. (b) Results using EMBSD
measure.
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gorithms in an ITU-T competition that was held to find a more
robust objective speech quality measure. The PESQ method at-
tempts to overcome these limitations and produce more accurate
scores in the presence of these disturbances. In our case, robust
estimates of speech quality in the presence of background noise
is of particular interest, since this is the primary source of cor-
ruption we are considering.

The EMBSD measure was developed by Yang and Yan-
torno [12, 13] by altering the Modified Bark Spectral Distor-
tion (MBSD) measure, which itself is an extension of the Bark
Spectral Distortion (BSD) measure. The modification made to
the BSD algorithm to develop the MBSD algorithm was the
consideration of noise masking. Through the application of
a Noise Masking Threshold (NMT) level, an attempt is made
to remove the perceptually insignificant disturbances from the
speech quality estimate, thus improving performance over con-
ventional BSD [12].

Both PESQ and EMBSD are perceptual speech quality
measures. Any change in these scores from one test scenario
to another is indicative of a quality difference perceivable by a
human listener. Two things to keep in mind about these mea-
sures though are PESQ is an opinion score and EMBSD is a
distortion score. The ramification of this is a higher score is
better for PESQ, while a lower score is better for EMBSD.

For this evaluation, quality scores from the two objective
measures were computed from all thirty utterances at 15, 10,
5 and 0 dB SNR. A summary score was then created for each
SNR by computing the mean of the thirty individual utterance
scores. The window functions tested included Rectangular and
four Chebyshev windows ranging in dynamic range from 40 to
10 in 10 dB steps. We also tested the degraded speech as a
reference. The results for the object speech quality experiments
are shown in Fig.3. Plot (a) and (b) show the plots for PESQ
and EMBSD respectively.

4. Discussion
From the spectrogram results, where a Hamming window has
been used to estimate the phase spectra, a degree of noise re-
duction over the degraded speech can be observed. The level
of noise reduction in this case appears to be the lowest out of
the six tested scenarios. In the other cases, as the dynamic
range of the window function used to estimate the phase spectra
decreases, the amount of noise observable in the spectrogram
also decreases. In Fig.2(h), where a Chebyshev window with
10 dB dynamic range has been used to estimate the phase spec-
tra, the spectrogram looks similar to the clean speech spectro-
gram (Fig.2(a)).

The objective speech quality results shown in Fig.3, also in-
dicate that an improvement in speech quality occurs when the
STFT phase spectrum was estimated using clean speech and
a Hamming window. In Wang and Lim’s work [4], they re-
ported an equivalent SNR improvement for a similar scenar-
ios of 1 dB. Using our modified framework, we estimated an
equivalent SNR improvement of 3.75 dB. In an informal exper-
iment, we modified our framework parameters to match Wang
and Lim’s more closely; 52 ms frame size, 50% overlap and
no zero padding. This resulted in an estimated equivalent SNR
improvement of approximately 1 dB.

When a Chebyshev 30 window function was used to esti-
mate the STFT phase in conjunction with clean speech, it re-
sulted in an estimated equivalent SNR improvement of 9.75 dB.
This figure is 6 dB better than the Hamming window estimate,
which indicates that reducing the dynamic range of the window
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ction used to estimate the STFT phase spectrum can improve
perceived speech quality.

5. Conclusions
have proposed and investigated estimating the STFT phase

ctrum independently from the STFT magnitude spectrum for
ech enhancement applications.
In our experiments where we used a Hamming window

estimate both a STFT magnitude spectrum from degraded
ech and a STFT phase estimate from clean speech, little im-
vement in speech quality could be observed. This set-up was
ilar to Wang and Lim’s [4] and confirmed their findings.
en we replaced the window function used to estimate the
se spectrum to one with a lower dynamic range, a substan-
increase in noise reduction and speech quality could be ob-

ved. This effect could be seen in both spectrogram plots and
asured using two perceptual domain objective speech quality
asures.
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