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Abstract

In this paper, we propose a unique approach to enhance speech
signals that have been corrupted by non-stationary noises. This ap-
proach is not based on a spectral subtraction algorithm, but on an
algorithm that separates the speech signal and noise signal contri-
butions in the autocorrelation domain. We call this technique the
AR-HASE speech enhancement algorithm.

In this initial study, we evaluate the performance of the
new algorithm using the average PESQ score computed from 10
male utterances and 10 female utterances taken from the TIMIT
database as a measure of speech quality. We test the algorithm
using one broadband stationary noise and two non-stationary
noises. We will show that the AR-HASE enhancement algorithm
produces near transparent quality for clean speech, gives poor
enhancement performance for broadband stationary noises, and
gives significantly enhanced quality for the two non-stationary
noises.

Index Terms: speech enhancement, autocorrelation, impulsive
noise.

1. Introduction
Many of the state-of-the-art speech enhancement algorithms use
the analysis-modification-synthesis framework [1] in their opera-
tion. In this framework, the corrupted speech signal is broken up
into short-time segments, which are transformed to the frequency
domain where only the spectral magnitude is modified. The speech
signal is then reconstructed with an inverse short-time Fourier
transform followed by an overlap-add operation. This structure
is used by the popular spectral subtraction algorithm, originally
proposed by Boll [2] in 1979, and also by techniques related to
Wiener filtering, such as Ephraim-Malah’s method [3] and all its
more recent variants.

These spectral enhancement algorithms require an estimate of
the noise spectrum, which can be obtained from non-speech seg-
ments indicated by a voice activity detector or, alternatively, with a
minimum statistics approach [4], i.e. by tracking spectral minima
in each frequency band. In consequence, they are effective only
when the noise signals are stationary or at least do not show rapidly
varying statistical characteristics. The worst type of noise for these
systems is when the noise signal is typically coincident with the
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ch signal, and absent at other times. This situation, for exam-
could arise with an impulsive noise. In this case, most of the
speech frames could be completely devoid of impulsive noise,

the speech frames could contain a large amount of this noise.
andle these situations, noise reduction techniques that oper-
ntra-frame (within the current frame) are required; these tech-
es cannot use the noise power spectrum estimate from other
speech frames.
In previous work, we have proposed a noise robust spectral
ation technique for short-time speech signals that operates

-frame. This method uses the periodic correlation property of
t-time speech signals and the autocorrelation domain to per-

noise reduction. It is well known that the pitch period of
an speech is typically constrained to values between 2 ms and
s. This means that in the autocorrelation domain, we will
large magnitude coefficients at these periods. This property,

ersely, is generally not true for noise signals. By computing
ectral estimate using only the higher-lag autocorrelation coef-
nts, we have a way of separating the speech and noise signal
out having to estimate the noise signal directly. We call this
od, Higher-lag Autocorrelation Spectral Estimation (HASE)
6].
The HASE method was motivated by the large volume of pre-
s work on noise robust Automatic Speech Recognition ASR
re extraction based on autocorrelation domain processing [7]

[9] [10]. This method has been successfully applied to the
e robust ASR problem, particularly where the noise signal had
dly changing characteristics. The goal of ASR feature extrac-
is to produce features that have a low dimensionality, are in-
itive to speaker and environmental changes and are effective
iscriminating the linguistic units. These goals have little in
mon with the goals of speech enhancement.
In this paper, we investigate the HASE algorithm for speech
ncement. We show that this algorithm has some inherent lim-

ons for enhancement applications. We propose to overcome
e limitations by using an Auto-Regressive (AR) model of high
r. We refer to this extended HASE algorithm as the AR-HASE
rithm. It is our aim in this work to explore the potential of this
nique for the enhancement of speech signals corrupted by both
onary and non-stationary disturbances.

. Speech Enhancement using Higher-lag
Autocorrelation Spectral Estimation

rief description of the previously proposed Higher-lag Auto-
elation Spectral Estimation (HASE) technique proceeds as fol-
. The short-time speech segment (approx. 32 ms) is first
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windowed using a Hamming window. Following this, a biased
estimate of the autocorrelation sequence is made. Once the auto-
correlation sequence is computed, the higher-lag range (2 ms to
32 ms) of one-side of the autocorrelation sequence is windowed
using a high dynamic range window function. The Double Dy-
namic Range (DDR) window function design method [5] is used to
compute this window. The magnitude spectrum of the windowed
higher-lag autocorrelation sequence is then computed as an esti-
mate of the short-time power spectral density.

The speech enhancement framework that we first used to eval-
uate the performance of the HASE algorithm for speech enhance-
ment is shown in Fig.1. Here, we have taken the typical spectral
subtraction algorithm and modified it. We have substituted the en-
hanced short-time power spectrum estimate in the spectral subtrac-
tion framework with the power spectral estimate computed using
the HASE algorithm.

As mentioned previously, the spectral subtraction algorithm
requires an estimate of the noise power spectrum. In the proposed
framework, this estimate is not required. The speech signal en-
hancement is performed based on prior knowledge of the auto-
correlation sequences of typical speech and noise signals. Speech
signals (particularly voiced) have autocorrelation sequences with
large magnitude coefficients at higher-lag values. This property is
not typically observed in noise signals. Therefore, by using only
the higher-lag portion of the autocorrelation sequence to compute
a spectral estimate, the noise contribution is reduced.

The first problem we encountered in applying the HASE al-
gorithm in this framework is the Fourier phase spectrum and the
HASE magnitude spectrum are not well matched. To achieve good
results in the synthesis stage, the pitch harmonic features in the
phase spectrum and magnitude spectrum need to match well. This
problem is demonstrated in the analysis shown in Fig.2. This fig-
ure shows the Fourier power spectrum of a 32 ms frame containing
an /iy/ sound (plot (a) dashed line) and the group delay sequence
computed from the Fourier phase spectrum (plot (b)). Wherever a
pitch harmonic is present in the Fourier power spectrum, the corre-
sponding group delay sequence shows a near constant value. How-
ever, the low power regions between the pitch harmonics give spu-
rious values in the group delay sequence. Figure 2(a) also shows
the HASE spectral estimate (solid line) for the same frame. Due
to the extra windowing steps in the HASE algorithm, the band-
widths of the pitch harmonics are larger than in the direct case.
This means that in the synthesis stage, relatively high magnitude
spectral coefficients are matched with spurious phase coefficients.
This is the cause of noticeable distortion in the output speech.

There are several ways to reduce the problem of pitch har-
monic bandwidth mismatch between the magnitude and phase
spectrum. The approach we have chosen for this study is to in-
crease the number of samples used in estimating the magnitude
spectrum. For example, in the case of the HASE algorithm, a
32 ms frame is processed. This allows a one-sided biased auto-
correlation sequence to be computed that has a lag range of up
to 32 ms. To reduce the bandwidth of the pitch harmonics, we
need a one-sided autocorrelation sequence with a lag range greater
than 32 ms. Extension of this sequence can be achieved with the
aid of Auto-Regressive (AR) modelling. Rather than computing
the biased estimate of the autocorrelation sequence using the FFT
algorithm, we propose to compute it as the inverse Fourier trans-
form of a high order AR power spectral estimate, thus extending
the non-zero lag range beyond 32 ms. This approach also provides
a further degree of freedom. By manipulating the order of the
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re 2: Comparison of Fourier power spectrum and the HASE
er spectrum. (a) Power spectrum estimate of a 32 ms frame
aining an /iy/ sound using Fourier transform (dashed line) and
HASE algorithm (solid line). (b) Group delay sequence com-
d from the Fourier phase spectrum.

model, we can tune the performance of the enhancement algo-
. A brief evaluation of the proposed HASE and AR-HASE

d enhancement algorithm are now presented.

3. Experimental Evaluation
is section, we evaluate the performance of both the HASE and
R-HASE algorithm. We first explore the performance of the
E algorithm in clean conditions to determine how significant
itch pulse bandwidth mismatch problem discussed in section
We then go on and test the enhancement potential of the AR-
E algorithm using three types of noise. One of the noises is a

onary type noise and the other two are non-stationary.
To evaluate the performance of the proposed speech enhance-
t algorithms, we took 20 speech files from the TIMIT database
down-sampled them to a sampling frequency of 8 kHz. The
tterances came from 10 different male and 10 different female
kers. Using these 20 samples, the average PESQ [11] score
computed as a measure of performance. PESQ stands for
ceptual Evaluation of Speech Quality”. This algorithm was
gned to provide a way to estimate the subjective quality of
ch. The output from the algorithm is an estimate of the Mean
ion Score (MOS), which is a number between 1 and 5. The

nings assigned to the scores in relation to the speech quality
1-Bad 2-Poor 3-Fair 4-Good 5-Excellent.
The three noise samples used in the evaluation are theoreti-

ideal for the HASE algorithm. That is, for an analysis frame
of 32 ms, the theoretical autocorrelation sequence has high
nitude coefficients for time lags between 0 and 2 ms and zero
e coefficients for time lags greater than 2 ms. These three
es are white Gaussian noise, repeating impulse noise and re-
ing chirp noise.
The three noises were created using the following steps. The
cial white noise was obtained using a Gaussian random num-

generator. To create the artificial impulsive noise, we first be-
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Model Order Male Female Combined

32 2.73 2.50 2.61
64 3.29 3.23 3.26
96 3.25 3.85 3.55

128 3.13 3.83 3.48
160 3.11 3.79 3.45
192 3.06 3.72 3.39
224 2.97 3.65 3.31
255 2.89 3.59 3.24

Table 1: Mean PESQ scores of AR-HASE algorithm with different
AR model orders tested on clean speech.

gan with a 32 ms block of zeros. To this block, we added a unit
pulse of 2 ms duration. The starting position of the 2 ms pulse was
randomly selected between 0 and 30 ms using a uniform random
number generator. We then concatenated this block with another
32 ms block that contained only zeros. These two steps were then
repeated, but this time the sign of the 2 ms pulse was reversed to
maintain zero mean. These four steps were then repeated contin-
uously to get a sufficiently long sequence of the impulsive noise.
Thus, for this noise, the separation between successive pulses ran-
domly varies between 32 to 92 ms. Finally, the artificial chirp noise
was created by defining one period of the chirp as a sinusoidal sig-
nal whose frequency changes linearly from 0 kHz to 4 kHz (half of
the sampling frequency) over a period of 32 ms. This period was
then repeated to give a sequence of sufficient length.

3.1. HASE enhancement

Using the HASE algorithm in the proposed modified analysis -
modification - synthesis speech enhancement framework gave a
mean PESQ score of 2.85 for clean speech. This is considered a
low score for clean speech. As expected, distortion was also noted
during listening.

3.2. AR-HASE enhancement

The first evaluation of the AR-HASE algorithm is performed on
clean speech for different AR model orders. A high model order is
expected to give better performance; therefore, we start at a model
order of 32 and increase it by 32 until all the frame data is used in
the AR modelling. These results are shown in Table 1.

Since a model order of 96 gave the best performance in clean
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ditions, this model order is used in the enhancement evaluation.
results comparing the AR(96)-HASE enhanced speech with

nhanced speech is given in Fig.3.

4. Discussion
en we apply the HASE algorithm to clean speech utterances
listen to the HASE enhanced utterances, the speech is easily

erstood, but it sounds like the speakers pitch has been distorted.
get an average PESQ score of 2.85 which is approximately

ivalent in speech quality to speech corrupted with white Gaus-
noise at a global SNR of 20 dB. Thus, the HASE enhancement
rithm reduces the speech quality significantly for clean speech
als. Therefore, we have disregarded this algorithm.
When we apply the AR-HASE algorithm to clean speech sig-
and investigate its performance as a function of AR model
r, the peak in speech quality occurs at a model order of 96.
ompute the AR model of order 96, autocorrelation lags up to
s are used. This is sufficient to cover the pitch period of most

an speakers. For example, if we take a voiced speech frame
a speaker that has a pitch of 100 Hz, then compute a Fourier

trum from 0 to 4 kHz, we expect to see 40 peaks. To make an
spectrum match well with each of the 40 peaks in the Fourier
trum, we would require a minimum of 80 poles in the AR
el. Therefore, an order of 96 makes intuitive sense.
The AR-HASE algorithm is nearly transparent for clean
ch. Where there is noticeable distortion, it sounds more like a
rberant distortion than an additive background distortion. The
age PESQ score for clean speech was 3.55. This was equiva-
to a speech quality of speech corrupted with white Gaussian
e at a global SNR >30 dB.
The enhancement properties of the AR-HASE algorithm were
endent on the corrupting additive noise. For the broadband
te Gaussian noise, no enhancement in quality was achieved us-
a model order of 96. We attribute the poor performance for
case to the estimate of the short-time autocorrelation sequence.
r a short analysis frame, the autocorrelation estimate of a white
dband noise is far from the asymptotic estimate. In informal
ng, it was found that by using a very low model order (12-24),
white Gaussian noise could be eliminated from the speech, but
was at the expense of significant speech distortion.
The AR-HASE algorithm worked very well for the non-
onary noises. For the impulsive noise and repeating chirp
e at 5 dB SNR, the average PESQ scores were 0.87 and 0.97
Fourier
TransformBlocking

Frame

Transform
Inverse Fourier Fourier

Transform

Windowing

Overlap−Add
Enhanced

Speech

Speech
Corrupt

Phase Spectrum

Autocorrelation
Estimate

Window
Higher−Lag

Figure 1: Block diagram of the proposed AR-HASE based speech enhancement algorithm.
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Figure 3: PESQ performance of AR-HASE speech enhancement
compared to unenhanced speech. (a) White Gaussian noise. (b)
Repeating impulse noise. (c) Repeating chirp noise.

higher than the unenhanced scores respectively. This is equivalent
to a listener’s opinion of the speech quality moving from poor to
fair.

Since the AR-HASE algorithm gave good enhancement per-
formance for the non-stationary noises and poor performance for
the broadband stationary noise, it could be possible to get bet-
ter performance by combining this algorithm with an existing en-
hancement algorithm such as spectral subtraction. For this type of
approach, the contributions from both algorithms may be compli-
mentary. That is, if we use the spectral subtraction and the AR-
HASE algorithm in cascade, the spectral subtraction algorithm
could remove the stationary noise, and the following AR-HASE
algorithm could reduce any residual non-stationary noise.
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5. Conclusion
is paper, we have proposed a new approach to the enhance-
t of speech signals that have been corrupted by non-stationary,
tive and uncorrelated noise signals. This approach was not
d on a spectral subtraction algorithm, but on an algorithm that
rates the speech signal and noise signal contributions in the
correlation domain. This technique was called the AR-HASE
rithm.
The AR-HASE algorithm was first tested on clean speech sig-

It was shown that after choosing an appropriate AR model
r, near transparent quality could be achieved for clean speech.
algorithm was then tested on three types of noise signals using
verage PESQ score as a speech quality measure.
For broadband stationary noise, little enhancement of the
ch quality was gained using the AR-HASE algorithm. For
ther two noises tested, repeating chirp and impulsive noise, a
improvement in speech quality was measured.
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