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Abstract
In HMM-based pattern recognition, the structure of the HMM
is often predetermined according to some prior knowledge.
In the recognition process, we usually make our judgment
based on the maximum likelihood of the HMM, without
considering the time-varying property of state-level vari-
ables, which unfortunately may lead to incorrect results. In
this paper, we analyze the property of state-level variables
in the HMM and show it is possible to significantly enhance
the performance of speech recognition systems when us-
ing the state-level variable time-varying property. We pro-
pose four methods to model state-level variable trajecto-
ries and then test them on a phoneme classification task on
the TIMIT speech corpus, 11.95% error rate reduction is
achieved and some empirical conclusions are drawn.
Index Terms: speech recognition, Hidden Markov Model,
state-level variables.

1. Introduction

HMM (Hidden Markov Model) theory, especially on how
to learn the topology of HMM, is far from completed. Hid-
den states are used to encode the surrounding context and it
is essential to choose an appropriate topology for an accu-
rate HMM [2]. However, in most applications, the structure
of an HMM is selected based on prior knowledge and the
individual hidden state variables are associated with differ-
ent observation segments. For example, for isolated word
recognition with a distinct HMM designed for a word in
the vocabulary, the number of states corresponds roughly
to the number of sub-word units (e.g., phoneme) within the
word and the structure is left-to-right [1]. This implies that
a particular linguistic segment (phoneme) is forced to be at-
tached to each state that corresponds to a certain segment of
the observation sequence.

This paper will not focus on the learning of the topol-
ogy but on how to incorporate the additional information
because of this forcing. The state-level variable at different
segments should reflect the nature of the segment the state
represents, i.e., given an observation sequence, the state in
a model should have a higher posterior probability value for
the component it represents than other states for the same
component. However, the HMM-based recognizer does not
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the change of state-level variable into consideration. In
paper, we will analyze the characteristics of state-level
ables and show that using the state-level information in
HMM will be able to improve recognition results.
In the following section we briefly review the basics of
hidden Markov model. In Section 3 we analyze the char-
ristics of state-level variables in an HMM and possi-
ways to use state-level information for recognition. We
w our experimental results in Section 4, which is fol-
ed by a conclusion in Section 5.

2. Hidden Markov Models

n HMM with N underlying states, a state sequence S =
, S2, · · · , ST ) generated by the Markov chain cannot be
ctly observed, but only through the observation sequence

(Y1, Y2, · · · , YT ) result from the state sequence ac-
ing to the observation distribution defined by B = {bi(Yt) :
i ≤ N}, with bi(Yt) = P (Yt|St = i). The transi-

from state i to state j is specified by an N × N ma-
A = [Aij ] with Aij = P (St = j|St−1 = i). π =
π2, · · · , πN ] is the initial state probability vector with

P (S1 = i). λ is the compact notation for the model
meters in an HMM. There are three key problems of
rest that must be solved for the model to be useful in
-world applications. These problems are the following.
A. The Classification Problem
The probability of observation sequence Y given the λ,
|λ), can be used to perform classification. The compu-

n of P (Y |λ) is significantly simplified when defining
forward variable and backward variables [3]:

αt (j) = P (Y1, · · · , Yt, St = j|λ) , (1)

ch is the probability of observing the first t observation
tors and visiting the j th state at time t. Similarly, the
kward variable is

βt (j) = P (Yt+1, · · · , YT |St = j, λ) . (2)

At any t, P (Y |λ) =
N∑

j=1

αt (j) βt (j). If the HMMs are

rate enough, the P (Y |λ) would be exactly the P (Y )
does not need any additional information. However, be-

se of the forcing of the topology of the HMMs or other
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reasons, using an additional heuristic information is possi-
ble.

B. The Optimal-State Sequence Problem
This is the computation of the state sequence that fits

best to an observed sequence. The Viterbi algorithm can
solve this problem. In the Viterbi algorithm a quantity delta
is defined:

δt (j) = max
S1,S2,··· ,St−1

P
(
S1, S2, · · · , St = j, Y t

1 |λ
)
, (3)

which is the highest likelihood of observing the first t obser-
vations along a single path, S1, S2, · · · , St with St = j and
can be computed inductively. A backtracking procedure can
be used to obtain the optimal-state sequence.

C. The Training Problem
This is the computation of the model parameters A, B

and π to maximize the probability of observation sequences
in the training set. The Baum-Welch algorithm is often used
to train parameters which heavily depend on the a posteriori
probability variable

γt (i) = αt (i)βt (i) /P (Y |λ) , (4)

which is the probability of being in state i at time t, given
the observation sequence Y and the model λ.

3. State-Level variables

In [1], Bengio has shown that a left-to-right model is more
appropriate than an ergodic model in speech recognition.
Fig. 1 is the most commonly used HMM structure in phoneme-
based ASR. In the rest of this paper, all the investigations are
based on Fig. 1. Consider only the numerator in Equation

Figure 1: Left-To-Right HMM graph

(4) , which reflects the change of posteriori state probability
for state i at different times t. If we link them from t = 1 to
t = T and thus form a gamma trajectory for state i. Gamma
trajectories of different state will have different evolutions
and reflect the role of the hidden state.

Fig. 2(a) shows the gamma trajectories of three states for
a phoneme ‘aa’ from the TIMIT database, where the solid
line is the trajectory of state 1, the dashed-dot line represents
the second trajectory, and the dotted line represents the third
trajectory. Fig. 2(a) conveys at least two phenomena:

• Each state has the highest a posteriori probability at
its corresponding local segment. Beyond this local

We
tori

ject
as ‘
HM

−1

−1

−1

−1

−1

−1

−1

−1

−1

 lo
g 

αβ

an a
tion
traje
t, lo
(j =
ries
thre
con

1
−30

−20

−10

0

10

20

30

40

 r
el

at
iv

e 
lo

g 
α

Figu
stat

time

606

INTERSPEECH 2006 - ICSLP
segment, the state a posteriori probability declines rapidly.
That is, a state can only model well its corresponding
local segment.

• For a given segment, a state may have a higher a pos-
teriori probability value than other states if it is closer
to the state that represents the segment. For example,
at segment 1 that is modeled by state 1, state 2 will
have a higher a posteriori probability value than state
3, since state 2 is closer to state 1 than state 3.

call the trajectories like in Fig. 2(a) as the typical trajec-
es because they reflect the role of hidden states.
By comparison, Fig. 2(b) shows atypical log gamma tra-
ories of the three states for one of the phonemes labeled
iy’ that has been mistaken as ‘aa’ by the conventional
M-based recognizer.
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Figure 2: Log gamma trajectories of three states

In fact the α variable and the δ variable (δ can be seen as
pproximation of the α variable) have similar time evolu-
s as the γ variable. Fig. 3(a) shows the relative log alpha
ctories of three states (to display conveniently, at every
g(αt (j)) is subtracted from the mean of log(αt (j))
1, 2, 3) and we call them relative log alpha trajecto-

). Fig. 3(b) shows the relative log delta trajectories of
e states. The two trajectories are very similar; they both
vey the same two phenomena as Fig. 2(a).
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re 3: Relative Log alpha and delta trajectories of three
es

Gamma, alpha, delta state-level trajectories have similar
evolutions, which will reflect the role of hidden states.



The rest of this paper will only use the gamma trajectories
as the example.

4. Modeling State-Level trajectories

State-level trajectories are a type of coupled sequential data;
how to model them is a major problem. Real speech signals
of the same speech unit may vary significantly and gamma
trajectories also show great diversity. We can seek some
properties of an ensemble for state-level trajectories. In this
paper, we will use the following four methods to capture the
major properties of the trajectories. Each following method
is a refinement of its preceding method.

A. Computing the number of intersecting points (NIPs)
First, we use a simple method to capture the major prop-

erties of the trajectories of different states by computing the
total number of intersecting points (NIPs) of each pair of
trajectories. For HMMs with N states, the typical NIPs is
C2

N , which means each pair of trajectories has only one in-
tersecting points. For the HMMs in Fig. 1, Fig. 4 shows
the histogram of NIPs of the gamma trajectories for the
phonemes ‘aa’ (solid line) and for the phonemes mistaken
for ‘aa’ (dotted line) in TIMIT training set by a conventional
recognizer. We can see from Fig. 4 that the two histograms
are quite different, especially when the NIPs is less than 4.
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Figure 4: Histogram of NIPs of three gamma trajectories

For HMMs with N states, only one heuristic NIPs den-
sity is needed.

B. Computing the number of separate intersecting
points (NSIPs)

Although the NIPs may provide some discriminative in-
formation for HMMs, it still makes some confusions in some
cases. For example, for N=3, if a pair of gamma trajectories
have 3 intersection points while other pairs don’t have any,
they are the atypical gamma trajectories. To reduce this kind
of confusion, we propose to compute the number of separate
intersecting points for each pair of trajectories respectively.

For HMMs with N states, C2
N heuristic NSIPs densities

are needed.
C. Computing the number of separate discriminative

intersecting points (NSDIPs)
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By further refining the above method, we classify the in-
ection points on each pair of trajectories into two types.
e one is: on the left of an intersecting point,
{ind(i)<ind(j)

γt(i)>γt(j)
, on the right,{ind(i)<ind(j)

γt+1(i)<γt+1(j)
,

re ind(i) denotes the index number of the state i; type
is: on the left of an intersecting point,
{ind(i)>ind(j)

γt(i)>γt(j)
, on the right,{ind(i)>ind(j)

γt+1(i)<γt+1(j)

We call this method as computing the number of sepa-
discriminative intersecting points (NSDIPs). For HMMs
N states, 2 ∗C2

N heuristic NSIPs densities are needed.
D. Computing the position of separate discriminative
rsecting points (PSDIPs)
Computing the position of separate discriminative in-
ecting points would further refine the above methods.
e we propose a novel method, which can be illustrated
ig. 5, to keep track of the position of only some key

rsecting points.

1 2 3 4 5 6 7
−1480

−1475

−1470

−1465

−1460

−1455

−1450

−1445

−1440

 frame number

 lo
g 

αβ

re 5: Optimal and worst state sequence on gamma tra-
ories

From Fig. 5, we may obtain the optimal state sequence
s1, s1, s1, s2, s3, s3)(marked with stars) and the worst

e sequence (s3, s3, s3, s3, s3, s1, s1)(marked with squares).
m the two kinds of state sequences, we know there exist
e intersecting points: point between t = 4 and t = 5
γt (1) and γt (2); t = 5 and t = 6 for γt (2) and γt (3);
5 and t = 6 for γt (1) and γt (3).
So we will keep the heuristic optimal state sequence
worst state sequence information, which is used to keep
k of the position of separate discriminative intersecting
ts (PSDIPs). For HMMs with N states, 2 ∗ N heuristic
IPs densities are needed.

To use the addtional information provided by the state-
l trajectories, we modify the observation probability P (Y |λ)
ollows:

log P̃ (Y |λ) = log P (Y |λ) + σ

Q∑

j=1

log p (dj), (5)

re σ is a scaling multiplier, Q is the number of heuristic
sities and p (dj) denotes the probability computed from
jth densities.



5. Experimental Results

We have carried out several experiments to test our model
on a speech phoneme classification task, i.e., assuming the
segmentation time is known, the task will recognize the uni-
gram and context-independent phonemes. We used the pho-
netically balanced TIMIT speech database. Our training
and testing sets are created with the ‘sx’ and ‘si’ training
and testing sentences from TIMIT with 3696 and 1344 dis-
tinct sentences, respectively. The standard phonetic clus-
tering [4] was used, resulting in 39 phoneme models. We
use HTK [5] as the baseline, in which the three-state left-to-
right models as shown in Fig. 1 are adopted.

We compared the performances of five methods: (1)
HMM only; the other four make use of state-level infor-
mation: (2) HMM with the NIPs for the gamma, alpha,
delta trajectories; (3) HMM with the NSIPs for the three
kinds of trajectories; (4) HMM with the NSDIPs for the
three kinds of trajectories; (5) HMM with the PSDIPs for
the three kinds of trajectories. Gaussian mixtures were used
for the output probabilities. To test whether the proposed
methods perform better on good acoustic models or on poor
acoustic models, we use 8 mixture components per state as
the poor model and 64 mixture components per state as the
good model. 24 mixture components per state is used as the
average model. We used 12 Mel Cepstral coefficients, plus
the energy parameter, and their first and second order dif-
ference as the output feature. Thus the total dimension of
the feature vector is 39. These parameters are derived from
32 ms long window frames with a 22 ms overlap in each of
the two adjacent frames. In all methods, computing prob-
ability about the intersection points adds little in terms of
the total computational cost, since the computational cost
is mostly caused by computing the observation probabil-
ity required by a conventional HMM-based recognizer. All
methods concerning the delta trajectories use the Viterbi as
the decoding method. We use the histogram for computing
probability p (k). The recognition rates are given in Table 1.
We can see from Table 1 that in all methods gamma trajec-
tories are better than alpha trajectories; this is as expected
because the gamma variables are determined by the past and
future context while the alpha variables are determined by
the past context. Also, in all cases alpha trajectories are
better than delta trajectories, since delta can be seen as an
approximation of alpha.

From NIPs to PSDIPs, the intersection points are grad-
ually better modeled, and the improvements become more
and more. The best result with 8 mixtures (67.88%) causes
8.78% error rate reduction, while with 24 mixtures cause an
11.26% reduction and with 64 mixtures result in an 11.95%
reduction. This means state-level variable will reflect the
role of states better in a good acoustic model, and thus bring
more improvements.
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le 1: Comparison of HMMs with different methods and
erent trajectories.

method trajectory 8 mix 24 mix 64 mix
baseline 64.79 68.47 71.13

NIPs gamma 65.92 70.22 72.99
alpha 65.88 70.11 72.98
delta 65.85 70.05 72.88

NSIPs gamma 66.22 70.82 73.49
alpha 66.00 70.55 73.33
delta 65.91 70.45 73.27

NSDIPs gamma 66.27 70.99 73.62
alpha 66.21 70.88 73.53
delta 66.12 70.84 73.46

PSDIPs gamma 67.88 72.02 74.58
alpha 67.70 71.93 74.48
delta 67.65 71.90 74.43

6. Conclusions and Future Work

his paper, we have shown that the state-level variables
e their own specific time-varying properties, which can
ct the roles of individual hidden states of the HMM. We

e proposed four methods for using this type of state-level
rmation in recognition tasks. From our initial investiga-
we have found that the more accurately we model the

rsection points, the better improvements will be achieved.
also found the better the acoustic model is, the larger
r rate reduction can be obtained. So far, we model the
rsecting points of the trajectories only; this probably can
ignificantly improved by modeling the state-level vari-
s trajectories directly.
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