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ABSTRACT

This paper presents a new subspace modeling and selection
approach for noisy speech recognition. In subspace modeling,
we develop factor analysis (FA) for representing noisy speech.
FA is a data generation model where the common factors are
extracted with factor loading matrix and specific factors. We
bridge the connection of FA to signal subspace (SS) approach.
Interestingly, FA partitions noisy speech space into a principal
subspace containing speech and noise and a minor subspace
containing residual speech and residual noise. To estimate
clean speech, we minimize the energies of speech distortion in
principal subspace as well as minor subspace. More
importantly, in subspace selection, we explore optimal
subspace partition via solving hypothesis test problems. We
test the equivalence of eigenvalues in minor subspace so as to
determine subspace dimension. To fulfill FA spirit, we further
examine the hypothesis of uncorrelated residual speech.
Optimal solutions are realized through /likelihood ratio test with
the approximated chi-square distributions as test statistics.
Subspace partition is performed according to the confidence
towards rejecting null hypotheses. In the experiments on
Aurora2 database, FA outperforms SS in subspace modeling.
New selection algorithms effectively determine subspace
dimension for noisy speech recognition.

Index Terms: subspace modeling, subspace selection, factor
analysis, speech recognition

1. INTRODUCTION

Automatic speech recognition (ASR) is crucial for building
human computer interaction systems. However, in noisy
environments, system performance is deteriorated. To achieve
robustness in noisy speech recognition, one popular approach is
to perform front-end denoising process. The enhanced speech
can be recognized by matching with clean speech models.
Basically, front-end processing is advantageous because the
computation cost is low and no adaptation data is required
beforehand. In the literature, spectral subtraction and signal
subspace were acted as popular speech enhancement
approaches. Spectral subtraction [3] was exploited to estimate
clean speech by subtracting additive noise from noisy speech in
spectral domain. This approach suffered from the annoying
tonal “musical noise” in the produced residual noise.
Accordingly, Ephraim and Van Trees [7] presented signal
subspace approach where a signal subspace and a noise
subspace were partitioned via eigen-decomposition of noisy
speech. Clean signal was estimated from signal subspace. The
complementary noise subspace was removed. Signal estimation
was done by minimizing signal distortion while limiting energy
of residual noise below a threshold. Nevertheless, the denoising
performance highly relied on the partition of signal/noise
subspaces. In previous studies, subspace dimension was
empirically determined.
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In this paper, we are motivated to generalize subspace
paradigm for noisy speech analysis and recognition. The
generalization is twofold. First, we extend the representation of
noisy speech using factor analysis (FA) which is a powerful data
analysis mechanism originated in societies of social science and
machine learning [2]. FA is closely related to principal component
analysis developed for feature dimension reduction. Typically, FA
extracts common factors which are useful to represent correlation
between different features. This property is crucial for modeling
full covariance matrix which is essential in subspace modeling. FA
was applied for estimating covariance matrices and building
hidden Markov model (HMM) based ASR systems [9]. Here, we
present FA subspace modeling for noisy speech recognition. Noisy
speech is decomposed into principal factors and minor factors, or
correspondingly projected onto two subspaces. The first subspace
represents the majority of clean speech with little noise
information. The other subspace is a residual subspace containing
noise and residual speech. FA can recover clean signal from
principal subspace as well as minor subspace instead of using SS
where the noise subspace was entirely discarded [7]. In the second
generalization, the subspace approach is activated with adaptive
selection of subspace dimension. We exploit two selection
solutions to testing whether the decomposition of covariance
matrices satisfy FA modeling. Experiments on Aurora2 database
show that proposed subspace modeling and selection attain
desirable speech recognition performance in presence of different
signal-to-noise ratios.

2. SUBSPACE MODELING
2.1. Modeling of Noisy Signal
Signal subspace (SS) [7] is well-known for modeling and
enhancing noisy signal z . Assuming K-dimensional clean signal
y is corrupted by additive noise n, SS expresses noisy signal by
z=y+n=Wx+n. €))
In (1), clean signal is assumed to be in a M-dimensional subspace
(M < K ) of Euclidean space ¥ with spanning set consisting of
columns of W . x denotes the coordinate vector. Through
eigendecomposition of covariance matrix of z, we can construct
a signal subspace and a complementary noise subspace using
eigenvectors corresponding to M positive eigenvalues and
K — M zero eigenvalues, respectively. Signal subspace coincides
with the subspace span W for constructing clean signal. Clean
signal can be estimated by minimizing signal distortion and
simultaneously limiting permissible level of residual noise [7].
More attractively, we present FA modeling of noisy signal.
The basic idea of FA is to use a K x M factor loading matrix @,
a M-dimensional common factor vector f and a K-dimensional
specific factor vector r to represent signal z as
z=0f +r, )
Specific factors r are viewed as residual signal or modeling error.
In analysis of noisy speech, these factors carry information of
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residual speech as well as residual noise. FA modeling should
possess the following properties [2]. Common factors and

residual signal are uncorrelated E[fr1=0 and Gaussian
distributed with zero mean vectors E[f]=E[r]=0 and

diagonal covariance matrices E[ff’]=17,, and E[rr’]=¥ .

Then, In general, the dependencies among features can be
properly modeled by common factors. The covariance matrix
of residual signal ¥ should be diagonal. Namely, residual
factors are specific and uncorrelated. Observation vectors are
then Gaussian distributed with z ~ N(0, D®” +¥) .

Different from principal component analysis (PCA) [8]
developed for dimension reduction, FA aims to extract
common factors for data modeling. PCA finds principal
components for representing majority of data variability while
FA characterizes data dependencies using a small number of
common factors. Using FA, factor loadings @ should be
estimated. One approach of finding ® was derived from
probabilistic PCA model [6][10] using maximum likelihood
estimation. Also, parameter @ can be estimated via
eigendecomposition of covariance matrix [8]

R, =007 + W =WAWT =W, A2 APW] +w A W, (3)
where W =[W,W,] and A =diag[A, A,] are partitioned
eigenvector matrix and eigenvalue matrix, respectively. Factor
loadings are obtained by @ = WPA]p/ 2 using principal
submatrices W,,A, corresponding to the preceding M

eigenvalues. Covariance matrix of specific factors ¥ is
generated using minor submatrices W, , A, corresponding to
the remaining K — M eigenvalues. To connect the relation of
FA to PCA in realization of R, , we can formulate noisy signal
in PCA form by z=WA"*c . The whitened sample ¢ with
ce’ = I can be obtained by ¢ = AWz and partitioned by

c= [cg ¢’ 1" . Then, common factors f and specific factors r

m‘*m Ym

can be obtained from z = WpAlp/zcp +W, A2 =®f +r. This
is a PCA oriented approach for estimating FA parameters. In
this FA approximation, we have E[ftT]= E[cpcg] =1, but
non-diagonal ¥ . We use this approach to realize FA.

It is interesting that FA can be viewed as subspace approach
because parameters O, f,¥ are derived from principal

subspace V, =spanl¥, and complimentary minor subspace
V., =spanW, . Using SS approach, clean signal and noise

signal individually constitute the signal subspace and the noise
subspace, respectively. Differently, common factors f in FA
come from the sources of clean signal f, and noise signal f, ,

f=f,+f,. Also, specific factors r can be expressed as the
sum of factors associated with residual clean signal r, and

residual noise .

n >

r=r, +r, . Assuming these factors are
independent, covariance matrix of noisy signal is yielded by
R, = E[(®f, +r, +Of, +1r,)(®f, +1, +Of, +1,)"]

)
=OR®" +R, + DR D" +R, =R, +R,

where Ry , Rg , R, and R, are covariance matrices

ry

corresponding to f, , f,

s Iy and r, , respectively. In subspace

modeling, covariance matrix plays a critical role. In this study, we
are motivated to estimate complete clean signal y not only from

principal subspace but also from minor subspace. Such FA
approach provides better generalization and deeper insight into
data correlation compared to SS where clean signal is recovered
only from M dimensional signal subspace. SS disregards the
residual signal existing in noise/minor subspace.

2.2 Signal Estimation
Similar to SS estimation of clean signal, we are deriving a linear
estimator y = Hz using K x K matrix H through minimizing the

signal distortion while keeping the energy of residual noise. Using
FA approach, clean signal is estimated from principal subspace
and minor subspace

§7:§’p+§’m:HPZ+HmZ. (5)
For the case of principal subspace, the estimation error is given by
e, =y, -y, =(H,~-Ix)y, +H,n, =e, +e,, (6)

where e, and e, indicate signal distortion and noise distortion,
respectively. Signal estimator I:Ip is then derived through the
constrained optimization
=2 . L =2 2
I'I[‘f[l:’l &y subjectto: & <yo., )

with &2 =trE[e

o 1= t[(H, -1 )OR,®" (H, -1;)"] and

r
py€py
Epzn = trE[epne;n] = tr[de)an(I)THpT] being energies of signal
and noise distortion, respectively. The permissible masking level is
proportional to variance of noise signal O';n with 0<y <1. After

Lagrange optimization, we obtain FA solution to signal estimation
in principal subspace as

H, = (DRy® Y DPR, D" + 11, OR;, ®") ', )
where p, is a Lagrange multiplier. SS solution in [7] is referable

to obtain (8). Here, we adopt covariance matrices (DRfycl)T and

@R, DT due to signal y, and noise n, in principal subspace.

Similarly, considering the estimation of residual signal y, in

minor subspace, we execute Lagrange optimization and derive
residual signal estimator as

v -1

Hm _Rry(Rry +;umRm) . (9)
The covariance matrices R,, R, of residual signal/noise y,,n,
are incorporated. In (8)(9), different Lagrange parameters s, f,,

are used. Typically, larger eigenvalues possessing higher energies
are gathered in principal subspace especially in speech frames. We
can retain more signal energy in this subspace because energy of
speech signal will mask that of noise signal. But, in minor
subspace, the energies of speech signal and noise signal are closer
or even the energy of noise signal is dominated. Tuning parameter
of masking level p,, should be larger than that x, for signal

estimation in principal subspace.
3. SUBSPACE SELECTION
Previously, we explored model selection of HMMs for speech

recognition [5]. In this paper, we concern selection of common
factors for FA subspace approach. In subspace modeling, it is
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critical to determine the partition of principal/signal subspace
and minor/noise subspace or equivalently their dimensions
dimV, =M and dimV,,=K-M . This partition also
corresponds to choose number of factors for FA. Using SS [7],
subspace selection was empirically controlled by the estimated
noise variance o . The smaller the variance was, the larger
the signal subspace was specified for modeling noisy signal.

3.1 Selection via Testing Equivalence of Eigenvalues

To significantly perform subspace decomposition, we employ
hypothesis test principle to determine dimension M . With
decomposition of covariance matrix R, , the problem of
subspace selection turns out to evaluate the equivalence of the
last K — M eigenvalues. Conceptually, decision boundary
between principal and minor subspaces can be determined
when the last K — M eigenvalues are relative small. We can
test the null hypothesis that the last K — M eigenvalues are
equal against alternative hypothesis that at least two of them
are different [1].

Hy Ay = Aya == A

H, : At least two of the last K — M eigenvalues are different
Equivalently, we are testing isotropic [10] eigenvalues in minor
subspace. Let R, be calculated using training samples
Z={z,---z,}. Eigenvalues of R, represent the variances of
decorrelated samples {d,---d} transformed by z=W d .

Assuming that eigenvalues are Gaussian distributed, we can
represent the likelihood under null hypothesis as

_N(K-M) N 1N

L(H)=@2r) * |A,|2 .exp{—EZAdnA;Ad:}, (10)
n=1

where Ad,=d,-d and A, =diag[d,., 4] s

eigenvalue matrix associated with minor subspace. L(H ) can
be further arranged as

_N(K-M) | ©
@m) 2 hI

N
- N ]
X 2 H -exp{f7tr[1\m1\m]} 11)

Also, likelihood under alternative hypothesis is derived by

K

H ﬂ'k

k=M+1

o~
J ? -exp{—%tr[AmA_nl ]} (12)

Optimal solution is carried out by evaluating likelihood ratio
g =L(H,)/L(H,) . The test statistic —2logq has the form

K K
—Nlog Hﬂk+N(K—M)log[ ! Zﬂkj. (13)
k=M1 K—-M i yn
This statistic can be approximated as a chi-square density ;(3

with degree of freedom being v =0.5(K - M)(K-M+1)-1
[1]. Finally, null hypothesis H is rejected at a significance

_N(K-M)
LH)=Q2r) ? (

level « if —2logg > Z&;a .

3.2 Selection via Testing Diagonal Covariance Matrix

However, selection via testing equivalence of eigenvalues is
feasible to different subspace approaches concerning
evaluation of eigenvalues. We are highlighting on developing
subspace selection approach for fulfilling FA paradigm. In FA

modeling, the covariance matrix of specific factors ¥ should be
diagonal because the principal common factors in FA have fully
captured correlation between features. The residual specific
factors r should be decorrelated. This property is essential for
modeling noisy speech in minor subspace. To realize a truly FA
framework, we are motivated to evaluate whether the covariance
matrix of the estimated residual signal v, is diagonal or not so as

to determine subspace dimension M . Estimation of r, depends

on the choice of M . Let o-rzy(i, j) denote the (i,j) entry of

reconstructed covariance matrix R,, . Null hypothesis and
alternative hypothesis are stated as

Hy:op(i,j)=0 forall i=j,

H, :ny(i,j);to forall i#j.
Assuming that the residual speech samples {ry,---ryy}

corresponding to observations {z,---z,} are Gaussian distributed,
the likelihood function is written by

NN 1 N
L(H)=(@x) 2 |R,| > -exp{—zt{kry‘zl(rw -T,)(r,, —F},)T}}

14)

Under null hypothesis, likelihood function becomes
P NK N

L(Hy)=T]Cn) 2 (c2G.i) 2 exp{—;

i 2
(Fymi = Tymi)
i 200 Gy m

n=1
(15)
Therefore, we can arrange likelihood ratio of L(H) to L(H,)

as

i=1

K —NK R N 1 N
2r) 2 j,i)) 2 ——NK 2
H{( ) (o5 (0) eXp|: 2 }} . |Rry|

. (16)

N N 1 TlE

@7) 2 |Ry| exp{—ENK} ’I}%(u)

In (16), sample covariance matrix R, is a Wishart density. After
careful derivation, the test statistic is asymptotically ;(3 with

degree of freedom v =0.5K(K +1) [4]. In the implementation, we

evaluate different M in a descending order and determine optimal
M until null hypothesis is rejected. Figure 1 shows the procedure
of FA modeling and selection for estimation of clean speech.

2o o)

Noise Detection
Noise Power Estimation

Noisy Speech
Covariance Matrix

Noise
Covariance Matrix

Subspace Selection

FA Modeling

‘ Principal Subspace H ‘ Minor Subspace H

Clean Speech Residual Speech
Estimation Estimation

Y Overlap/Add Clean Signal Integration

Figure 1. FA modeling and selection for clean speech estimation.
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4. EXPERIMENTS

4.1 Speech Database and Experimental Setup
We evaluated SS and FA subspace approaches for noisy
speech recognition using Aurora2 database. Aurora2 consisted
of English digits in the presence of additive noise and linear
convolutional distortion. There were three test sets in the
corpus. Set A had four noise types (subway, babble, car and
exhibition hall) that were similar to those in the training data,
and set B contained four noise types (restaurant, street, airport
and station noises) different from those in the training data. An
additional convolutional channel was used in set C. All these
three test sets consisted of six SNR conditions (-5dB, 0dB,
5dB, 10dB, 15dB and 20dB) and clean condition. Acoustic
models in clean training and multi-condition training were
investigated. There were 8,440 clean training utterances.

Speech features consisted of 13 MFCC coefficients and
energy along with the delta and acceleration coefficients. We
estimated continuous-density HMM parameters and built
speech recognizer using HTK toolkit. We specified 16 states
per word and three Gaussian mixture components per state.
Subspace decomposition and selection were performed frame
by frame. In signal estimation procedure, we used 40 sampling
points as a frame and shifted every 20 points. Time-domain
filters with 40x40 matrices were estimated. When computing

covariance matrix R a window of nine frames was

7z

considered. The control parameters u, and g, were tuned
for different environments and SNRs. Larger , is applied to

produce smaller residual noise and larger signal distortion in
principal subspace. On the contrary, smaller g, extracts

residual speech with larger noise. In the experiment, we tuned
two multipliers in ranges of 0<pu, <3 , 0<py,<7 .

Significance level was set as @ =0.95 in two FA selection
methods.

4.2 Experimental Results

The effectiveness of FA subspace modeling and selection is
illustrated in Table 1. We report recognition rates averaged by
three test sets in clean training for cases of baseline system, SS
and FA approaches. FA subspace selection methods via testing
eigenvalues and variances are labeled by FA I and FA II,
respectively. We find that subspace denoising procedures do
improve baseline speech recognition rates. FA I and FA 1I
outperform SS in presence of different SNR conditions. The
lower the SNR, the better the improvement is obtained. FA II
achieved higher recognition rates than FA 1. We have
confirmed the statistical significance of recognition
improvement of using FA compared to SS via matched-pairs
test. Also, similar results are obtained when evaluating
different methods in multi-condition training as shown in
Table 2. Improvement is moderate. From two sets of
experiments, we assure the effectiveness of proposed subspace
model with selection algorithms for noisy speech recognition.

5. CONCLUSIONS
In this paper, we have presented a new FA subspace modeling
of noisy speech for robust speech recognition. This model was
an extension of SS which has been widely applied for speech
enhancement. Using FA, signal estimators in principal
subspace and minor subspace were derived for sophisticated
recovery of clean signal. Importantly, we determine subspace

dimension via testing equivalence of eigenvalues and
decorrelation of covariance matrix. Optimal solutions were
formulated for subspace selection. Experiments on Aurora2
confirmed the performance of FA modeling and selection for
noisy speech recognition. In the future, we are investigating FA
subspace approach in frequency domain and developing real-time
estimation of x, and u, robust to different SNRs. Also, we are

exploring subspace modeling for other speech applications, e.g.
speaker adaptation, acoustic modeling and language modeling.

Table 1. Speech recognition rates (%) of different methods and
noise conditions in case of clean training

Baseline SS FA1 FA Tl
Clean 99.1 99.3 99.3 99.3
20 dB 97.4 97.7 97.7 97.9
15 dB 93.8 94.5 94.7 94.9
10 dB 81.7 85.0 86.0 87.2
5dB 56.8 64.0 66.3 70.1
0dB 30.3 38.3 41.8 44.7
-5 dB 15.2 19.8 21.3 22.7

Table 2. Speech recognition rates (%) of different methods and
noise conditions in case of multi-condition training

Baseline SS FA1 FATI
Clean 98.9 98.9 99.0 99.0
20 dB 98.3 98.6 98.6 98.6
15 dB 97.6 97.9 98.0 98.1
10 dB 95.6 96.3 96.4 96.5
5dB 88.3 90.9 91.3 91.5
0dB 63.0 75.3 75.8 76.6
-5 dB 27.5 45.1 45.7 46.5
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