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ABSTRACT 
This paper presents a new subspace modeling and selection 
approach for noisy speech recognition. In subspace modeling, 
we develop factor analysis (FA) for representing noisy speech. 
FA is a data generation model where the common factors are 
extracted with factor loading matrix and specific factors. We 
bridge the connection of FA to signal subspace (SS) approach. 
Interestingly, FA partitions noisy speech space into a principal 
subspace containing speech and noise and a minor subspace
containing residual speech and residual noise. To estimate 
clean speech, we minimize the energies of speech distortion in 
principal subspace as well as minor subspace. More 
importantly, in subspace selection, we explore optimal
subspace partition via solving hypothesis test problems. We 
test the equivalence of eigenvalues in minor subspace so as to 
determine subspace dimension. To fulfill FA spirit, we further 
examine the hypothesis of uncorrelated residual speech. 
Optimal solutions are realized through likelihood ratio test with 
the approximated chi-square distributions as test statistics. 
Subspace partition is performed according to the confidence 
towards rejecting null hypotheses. In the experiments on 
Aurora2 database, FA outperforms SS in subspace modeling. 
New selection algorithms effectively determine subspace 
dimension for noisy speech recognition. 
Index Terms: subspace modeling, subspace selection, factor 
analysis, speech recognition 

1. INTRODUCTION 
Automatic speech recognition (ASR) is crucial for building 
human computer interaction systems. However, in noisy 
environments, system performance is deteriorated. To achieve 
robustness in noisy speech recognition, one popular approach is 
to perform front-end denoising process. The enhanced speech 
can be recognized by matching with clean speech models. 
Basically, front-end processing is advantageous because the 
computation cost is low and no adaptation data is required 
beforehand. In the literature, spectral subtraction and signal 
subspace were acted as popular speech enhancement 
approaches. Spectral subtraction [3] was exploited to estimate 
clean speech by subtracting additive noise from noisy speech in 
spectral domain. This approach suffered from the annoying 
tonal “musical noise” in the produced residual noise. 
Accordingly, Ephraim and Van Trees [7] presented signal 
subspace approach where a signal subspace and a noise 
subspace were partitioned via eigen-decomposition of noisy 
speech. Clean signal was estimated from signal subspace. The 
complementary noise subspace was removed. Signal estimation 
was done by minimizing signal distortion while limiting energy 
of residual noise below a threshold. Nevertheless, the denoising 
performance highly relied on the partition of signal/noise 
subspaces. In previous studies, subspace dimension was 
empirically determined. 
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 this paper, we are motivated to generalize subspace 
igm for noisy speech analysis and recognition. The 
alization is twofold. First, we extend the representation of 
 speech using factor analysis (FA) which is a powerful data 
sis mechanism originated in societies of social science and 
ine learning [2]. FA is closely related to principal component 
sis developed for feature dimension reduction. Typically, FA 
ts common factors which are useful to represent correlation 
en different features. This property is crucial for modeling 

ovariance matrix which is essential in subspace modeling. FA 
applied for estimating covariance matrices and building 
n Markov model (HMM) based ASR systems [9]. Here, we 
nt FA subspace modeling for noisy speech recognition. Noisy 
h is decomposed into principal factors and minor factors, or 
pondingly projected onto two subspaces. The first subspace 
ents the majority of clean speech with little noise 
ation. The other subspace is a residual subspace containing 

 and residual speech. FA can recover clean signal from 
pal subspace as well as minor subspace instead of using SS 
 the noise subspace was entirely discarded [7]. In the second 
alization, the subspace approach is activated with adaptive 
ion of subspace dimension. We exploit two selection 
ons to testing whether the decomposition of covariance 
ces satisfy FA modeling. Experiments on Aurora2 database 
 that proposed subspace modeling and selection attain 
ble speech recognition performance in presence of different 

l-to-noise ratios. 

2. SUBSPACE MODELING 
odeling of Noisy Signal  

l subspace (SS) [7] is well-known for modeling and 
cing noisy signal z . Assuming K-dimensional clean signal 
corrupted by additive noise n , SS expresses noisy signal by 

nxnyz W .                                (1) 
, clean signal is assumed to be in a M-dimensional subspace 
K ) of Euclidean space K  with spanning set consisting of 
ns of W . x denotes the coordinate vector. Through 

decomposition of covariance matrix of z , we can construct 
nal subspace and a complementary noise subspace using 
vectors corresponding to M  positive eigenvalues and 

 zero eigenvalues, respectively. Signal subspace coincides 
the subspace span W  for constructing clean signal. Clean 
l can be estimated by minimizing signal distortion and 
taneously limiting permissible level of residual noise [7]. 
ore attractively, we present FA modeling of noisy signal. 
asic idea of FA is to use a MK  factor loading matrix ,
imensional common factor vector f  and a K-dimensional 
ic factor vector r  to represent signal z  as 

rfz .                                      (2) 
fic factors r  are viewed as residual signal or modeling error. 
alysis of noisy speech, these factors carry information of 
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residual speech as well as residual noise. FA modeling should 
possess the following properties [2]. Common factors and 
residual signal are uncorrelated 0][ TE fr  and Gaussian 
distributed with zero mean vectors 0][][ rf EE  and 

diagonal covariance matrices M
T IE ][ff  and ][ TE rr .

Then, In general, the dependencies among features can be 
properly modeled by common factors.  The covariance matrix 
of residual signal  should be diagonal. Namely, residual 
factors are specific and uncorrelated. Observation vectors are 
then Gaussian distributed with ),0(~ TNz .

Different from principal component analysis (PCA) [8] 
developed for dimension reduction, FA aims to extract 
common factors for data modeling. PCA finds principal 
components for representing majority of data variability while 
FA characterizes data dependencies using a small number of 
common factors. Using FA, factor loadings  should be 
estimated. One approach of finding  was derived from 
probabilistic PCA model [6][10] using maximum likelihood 
estimation. Also, parameter  can be estimated via 
eigendecomposition of covariance matrix [8] 

TTTT WWWWWWR mmmp
2/1

p
2/1

ppz ,  (3) 

where ][ mp WWW  and ][diag mp  are partitioned 
eigenvector matrix and eigenvalue matrix, respectively. Factor 
loadings are obtained by 2/1

ppW  using principal

submatrices pp ,W  corresponding to the preceding M
eigenvalues. Covariance matrix of specific factors  is 
generated using minor submatrices mm ,W  corresponding to 
the remaining MK  eigenvalues. To connect the relation of 
FA to PCA in realization of zR , we can formulate noisy signal 

in PCA form by cz 21W . The whitened sample c  with 

K
T Icc  can be obtained by zc TW21  and partitioned by 

TTT ][ mp ccc . Then, common factors f  and specific factors r

can be obtained from rfccz m
2/1

mmp
2/1

pp WW . This 
is a PCA oriented approach for estimating FA parameters. In 
this FA approximation, we have M

TT IEE ][][ ppccff  but 

non-diagonal . We use this approach to realize FA. 
It is interesting that FA can be viewed as subspace approach 

because parameters ,, f  are derived from principal 
subspace pp span WV  and complimentary minor subspace 

mm span WV . Using SS approach, clean signal and noise 
signal individually constitute the signal subspace and the noise 
subspace, respectively. Differently, common factors f  in FA 
come from the sources of clean signal yf  and noise signal nf ,

ny fff . Also, specific factors r  can be expressed as the 

sum of factors associated with residual clean signal yr  and 

residual noise nr , ny rrr . Assuming these factors are 
independent, covariance matrix of noisy signal is yielded by 

nyrnfnryfy

nnyynnyyz ]))([(

RRRRRR

ER
TT

Trfrfrfrf
,    (4) 
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fyR , fnR , ryR  and rnR  are covariance matrices 

ponding to yf , nf , yr  and nr , respectively. In subspace 
ling, covariance matrix plays a critical role. In this study, we 
otivated to estimate complete clean signal y  not only from 
pal subspace but also from minor subspace. Such FA 
ach provides better generalization and deeper insight into 
orrelation compared to SS where clean signal is recovered 
from M  dimensional signal subspace. SS disregards the 
al signal existing in noise/minor subspace. 
ignal Estimation  

ar to SS estimation of clean signal, we are deriving a linear 
ator zy Hˆ  using KK  matrix H  through minimizing the 
l distortion while keeping the energy of residual noise. Using 
pproach, clean signal is estimated from principal subspace 
inor subspace  

zzyyy mpmp ˆˆˆ HH .                          (5) 
e case of principal subspace, the estimation error is given by 

pnpyppppppp )(ˆ eenyIyye HH K ,          (6) 

pye  and pne  indicate signal distortion and noise distortion, 

ctively. Signal estimator pĤ  is then derived through the 
rained optimization 

2
pn

2
pn

2
py :subject tomin

pH
,                     (7) 

])()[(tr][tr pfyppypy
2
py

T
K

T
K

T HRHE IIee  and 

][tr][tr pfnppnpn
TTT HRHE ee  being energies of signal 

oise distortion, respectively. The permissible masking level is 
rtional to variance of noise signal 2

pn  with 10 . After 
nge optimization, we obtain FA solution to signal estimation 
ncipal subspace as 

1
fnpfyfyp ))((ˆ TTT RRRH ,           (8) 

p  is a Lagrange multiplier. SS solution in [7] is referable 

tain (8). Here, we adopt covariance matrices TRfy  and 
T  due to signal py  and noise pn  in principal subspace. 

arly, considering the estimation of residual signal my  in 
 subspace, we execute Lagrange optimization and derive 
al signal estimator as  

1
rnmryrym )(ˆ RRRH .                         (9) 

ovariance matrices rnry , RR  of residual signal/noise mm , ny

corporated. In (8)(9), different Lagrange parameters mp ,
ed. Typically, larger eigenvalues possessing higher energies 
thered in principal subspace especially in speech frames. We 
tain more signal energy in this subspace because energy of 

h signal will mask that of noise signal. But, in minor 
ace, the energies of speech signal and noise signal are closer 
n the energy of noise signal is dominated. Tuning parameter 

asking level m  should be larger than that p  for signal 
ation in principal subspace. 

3. SUBSPACE SELECTION 
ously, we explored model selection of HMMs for speech 
nition [5]. In this paper, we concern selection of common 
s for FA subspace approach. In subspace modeling, it is 



critical to determine the partition of principal/signal subspace 
and minor/noise subspace or equivalently their dimensions 

MVpdim  and MKVmdim . This partition also 
corresponds to choose number of factors for FA. Using SS [7], 
subspace selection was empirically controlled by the estimated 
noise variance 2

n . The smaller the variance was, the larger 
the signal subspace was specified for modeling noisy signal.
3.1 Selection via Testing Equivalence of Eigenvalues  
To significantly perform subspace decomposition, we employ 
hypothesis test principle to determine dimension M . With 
decomposition of covariance matrix zR , the problem of 
subspace selection turns out to evaluate the equivalence of the 
last MK  eigenvalues. Conceptually, decision boundary 
between principal and minor subspaces can be determined 
when the last MK  eigenvalues are relative small. We can 
test the null hypothesis that the last MK  eigenvalues are 
equal against alternative hypothesis that at least two of them 
are different [1]. 

KMMH 210 :
:1H At least two of the last MK  eigenvalues are different 

Equivalently, we are testing isotropic [10] eigenvalues in minor 
subspace. Let zR  be calculated using training samples 

}{ 1 NzzZ . Eigenvalues of zR  represent the variances of 
decorrelated samples }{ 1 Ndd  transformed by dz mW .
Assuming that eigenvalues are Gaussian distributed, we can 
represent the likelihood under null hypothesis as 

N

n

T
nn

NMKN

HL
1

1
m2m

2
)(

0 2
1exp)2()( dd ,  (10) 

where ddd ii  and ],,[diag 1m KM  is 
eigenvalue matrix associated with minor subspace. )( 0HL  can 
be further arranged as 

]tr[
2

exp1)2( 1
mm

2

1

2
)( N

MK

N
K

Mk
k

MKN

(11)

Also, likelihood under alternative hypothesis is derived by 

]tr[
2

exp)2()( 1
mm

2

1

2
)(

1
NHL

N
K

Mk
k

MKN

. (12) 

Optimal solution is carried out by evaluating likelihood ratio 
)()( 10 HLHLq . The test statistic qlog2  has the form 

K

Mk
k

K

Mk
k MK

MKNN
11

1log)(log .      (13)

This statistic can be approximated as a chi-square density 2

with degree of freedom being 1)1)((5.0 MKMK
[1]. Finally, null hypothesis 0H  is rejected at a significance 

level  if 2
;log2 q .

3.2 Selection via Testing Diagonal Covariance Matrix 
However, selection via testing equivalence of eigenvalues is 
feasible to different subspace approaches concerning 
evaluation of eigenvalues. We are highlighting on developing 
subspace selection approach for fulfilling FA paradigm. In FA 
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ling, the covariance matrix of specific factors  should be 
nal because the principal common factors in FA have fully 
red correlation between features. The residual specific 
s r  should be decorrelated. This property is essential for 
ling noisy speech in minor subspace. To realize a truly FA 
work, we are motivated to evaluate whether the covariance 
x of the estimated residual signal yr  is diagonal or not so as 

termine subspace dimension M . Estimation of yr  depends 

e choice of M . Let ),(2
ry ji  denote the ),( ji  entry of 

structed covariance matrix ryR . Null hypothesis and 
ative hypothesis are stated as  

0),(: 2
ry0 jiH  for all ji ,

0),(: 2
ry1 jiH  for all ji .

ing that the residual speech samples }{ ,y1,y Nrr

ponding to observations }{ 1 Nzz  are Gaussian distributed, 
elihood function is written by 

N

n

T
ynyn

NNK

RR
1

,y,y
1

ry
2

ry
2 ))((tr

2
1exp)2() rrrr

(14)
r null hypothesis, likelihood function becomes 

N

n
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fore, we can arrange likelihood ratio of )( 0HL  to )( 1HL

2
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), sample covariance matrix ryR  is a Wishart density. After 

l derivation, the test statistic is asymptotically 2  with 
e of freedom )1(5.0 KK [4]. In the implementation, we 
ate different M  in a descending order and determine optimal 
ntil null hypothesis is rejected. Figure 1 shows the procedure 
 modeling and selection for estimation of clean speech. 

Ŷ

re 1. FA modeling and selection for clean speech estimation. 



4. EXPERIMENTS 
4.1 Speech Database and Experimental Setup  
We evaluated SS and FA subspace approaches for noisy 
speech recognition using Aurora2 database. Aurora2 consisted 
of English digits in the presence of additive noise and linear 
convolutional distortion. There were three test sets in the 
corpus. Set A had four noise types (subway, babble, car and 
exhibition hall) that were similar to those in the training data, 
and set B contained four noise types (restaurant, street, airport 
and station noises) different from those in the training data. An 
additional convolutional channel was used in set C. All these 
three test sets consisted of six SNR conditions (-5dB, 0dB, 
5dB, 10dB, 15dB and 20dB) and clean condition. Acoustic 
models in clean training and multi-condition training were 
investigated. There were 8,440 clean training utterances. 

Speech features consisted of 13 MFCC coefficients and 
energy along with the delta and acceleration coefficients. We 
estimated continuous-density HMM parameters and built 
speech recognizer using HTK toolkit. We specified 16 states 
per word and three Gaussian mixture components per state. 
Subspace decomposition and selection were performed frame 
by frame. In signal estimation procedure, we used 40 sampling 
points as a frame and shifted every 20 points. Time-domain 
filters with 4040  matrices were estimated. When computing 
covariance matrix zR , a window of nine frames was 
considered. The control parameters p  and m  were tuned 

for different environments and SNRs. Larger p  is applied to 
produce smaller residual noise and larger signal distortion in 
principal subspace. On the contrary, smaller m  extracts 
residual speech with larger noise. In the experiment, we tuned 
two multipliers in ranges of 30 p , 70 m .

Significance level was set as 95.0  in two FA selection 
methods. 
4.2 Experimental Results 
The effectiveness of FA subspace modeling and selection is 
illustrated in Table 1. We report recognition rates averaged by 
three test sets in clean training for cases of baseline system, SS 
and FA approaches. FA subspace selection methods via testing 
eigenvalues and variances are labeled by FA I and FA II, 
respectively. We find that subspace denoising procedures do 
improve baseline speech recognition rates. FA I and FA II 
outperform SS in presence of different SNR conditions. The 
lower the SNR, the better the improvement is obtained. FA II 
achieved higher recognition rates than FA I. We have 
confirmed the statistical significance of recognition 
improvement of using FA compared to SS via matched-pairs 
test. Also, similar results are obtained when evaluating 
different methods in multi-condition training as shown in 
Table 2. Improvement is moderate. From two sets of 
experiments, we assure the effectiveness of proposed subspace 
model with selection algorithms for noisy speech recognition. 

5. CONCLUSIONS 
In this paper, we have presented a new FA subspace modeling 
of noisy speech for robust speech recognition. This model was 
an extension of SS which has been widely applied for speech 
enhancement. Using FA, signal estimators in principal 
subspace and minor subspace were derived for sophisticated 
recovery of clean signal. Importantly, we determine subspace 
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sion via testing equivalence of eigenvalues and 
relation of covariance matrix. Optimal solutions were 
lated for subspace selection. Experiments on Aurora2 
med the performance of FA modeling and selection for 
 speech recognition. In the future, we are investigating FA 
ace approach in frequency domain and developing real-time 
ation of p  and m  robust to different SNRs. Also, we are 
ring subspace modeling for other speech applications, e.g. 
er adaptation, acoustic modeling and language modeling. 

le 1. Speech recognition rates (%) of different methods and 
noise conditions in case of clean training 

 Baseline SS FA I FA II 
ean 99.1 99.3 99.3 99.3 
 dB 97.4 97.7 97.7 97.9 
 dB 93.8 94.5 94.7 94.9 
 dB 81.7 85.0 86.0 87.2 
dB 56.8 64.0 66.3 70.1 
dB 30.3 38.3 41.8 44.7 
 dB 15.2 19.8 21.3 22.7 

le 2. Speech recognition rates (%) of different methods and 
noise conditions in case of multi-condition training 

 Baseline SS FA I FA II 
ean 98.9 98.9 99.0 99.0 
 dB 98.3 98.6 98.6 98.6 
 dB 97.6 97.9 98.0 98.1 
 dB 95.6 96.3 96.4 96.5 
dB 88.3 90.9 91.3 91.5 
dB 63.0 75.3 75.8 76.6 
 dB 27.5 45.1 45.7 46.5 
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