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Abstract

Automatic labeling of prosodic events in speech has potentially
significant implications for spoken language processing applica-
tions, and has received much attention over the years, especially
after the introduction of annotation standards such as ToBI. Cur-
rent labeling techniques are based on supervised learning, relying
on the availability of a corpus that is annotated with the prosodic
labels of interest in order to train the system. However, creating
such resources is an expensive and time-consuming task. In this
paper, we examine an unsupervised labeling algorithm for accent
(prominence) and prosodic phrase boundary detection at the lin-
guistic syllable level, and evaluate their performance on an stan-
dard, manually annotated corpus. We obtain labeling accuracies of
77.8% and 88.5% for the accent and boundary labeling tasks, re-
spectively. These figures compare well against previously reported
performance levels for supervised labelers.

Index Terms: prosody recognition, accent, stress, prominence,
prosodic boundary, spoken language processing.

1. Introduction
Prosody is an all-inclusive term that is commonly used to refer to a
large class of supra-segmental phenomena that accompany spoken
language. These higher-level cues are influenced by a variety of
factors that range from the word sequence and the syntactic struc-
ture of the utterance, to the utterance category and the speaker’s
emotional state. They play a significant role in spoken language
understanding; as humans, we use them for determining the dia-
logue context, the speaker’s emotional state and intent, and at a
lower level, for word and structure disambiguation.

Prosodic phenomena manifest themselves in speech in dif-
ferent ways, including changes in relative intensity (energy) to
impart emphasis, or stress, to specific words or syllables; varia-
tions of the fundamental frequency (F0) range and contour; and
subtle timing variations, such as syllable lengthening, insertion
of pauses, etc. These cues are likely to be very useful for spo-
ken language understanding systems; however, it is often difficult
to precisely understand and exploit their relationship to the seg-
mental, lexical, syntactic and semantic structure of the utterance
from just their acoustic correlates. As a result, the past couple of
decades have seen the evolution of categorical annotation schemes
for prosodic events, the best-known among which is the Tones and
Break Indices (ToBI) standard [1]. The most important prosodic
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omena captured within this framework include pitch accents
prosodic phrase boundaries. Within the ToBI framework, pitch
nts roughly correspond with syllable prominence, or “stress”,
reas phrase boundaries serve to separate linguistically related
ks of speech and are loosely related to punctuation and syn-
c phrase boundaries.
Corpora annotated with ToBI-like labels can be very useful
earning the relationship between prosodic events and the lex-
syntactic and semantic structure of the utterance. However,

ting such corpora manually is expensive and time-consuming.
ce, they are severely restricted in size and scope; to date, only
standard publicly available corpus exists that has been labeled

ToBI events - the Boston University Radio News Corpus,
h contains about 3 hours of broadcast news-style speech.

Automatic labeling of prosodic events is, therefore, an attrac-
alternative that has received attention over the past decade.
al attempts using acoustic evidence alone have been reported
]; subsequent efforts harnessing acoustic, lexical and syntac-
ues have been reported in [3], [4] and [5]. However, the major
back with these methods is that they are all based on super-

d learning, and require a hand-labeled training corpus. This
the effect of tying the labeling system to the specific corpus
which it was trained. An unsupervised word prominence la-
g algorithm is discussed in [6], but this method assigns promi-
e scores on a continuous scale using only acoustic features.
In this paper, we develop an automatic, unsupervised prosody
ling algorithm that annotates accent and boundary events in
ch without the need for a hand-labeled training set. The sys-
is therefore not tied to any single data set or domain. Our algo-

is grounded in modifications of simple clustering techniques
ake use of acoustic, lexical and syntactic cues for prosody

ling. The remainder of this paper is organized as follows. Sec-
2 describes the data set and features we use for labeling and

uation. Section 3 gives an overview of our unsupervised label-
technique. In Section 4, we present our experimental results,
in Section 5, we present a brief discussion of the results and
est future directions to explore.

2. Data corpus and features
Boston University Radio News Corpus (BU-RNC) is a broad-
news-style read speech corpus containing speech from 7

kers (3 females, 4 males), totaling about 3 hours of acoustic
. A significant fraction of this data has been manually anno-
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tated with ToBI labels. In addition to the prosody labels, it also
contains the orthography corresponding to each spoken utterance,
ASR-generated phone-level alignments, and part-of-speech (POS)
annotation for each word in the orthography. Since our intention is
to explore unsupervised labeling techniques, our only motivation
for choosing to work with this corpus is to allow an easy, concrete
evaluation of our algorithm.

We collapse all categories of ToBI pitch accents into a single
accent label, and similarly all categories of prosodic phrase bound-
aries into a single boundary label, reducing the annotation task to
two independent binary classification problems. All prosody labels
are assigned at the linguistic syllable level. The following subsec-
tions describe the acoustic, lexical and syntactic features we use
for the unsupervised labeling task.

2.1. Acoustic features

The prosodic features we extract from the acoustic data and aux-
iliary sources essentially capture information about the intensity,
intonation and timing effects in the speech. Since we assign
prosodic labels to individual syllables, our acoustic feature vec-
tors are aligned at the linguistic syllable level. Syllabification of
the transcripts corresponding to the speech data is carried out us-
ing a deterministic algorithm based on the phonological rules of
English [7]. We extract the following acoustic features from the
data corpus:

• Intensity - within-syllable energy range, difference between
minimum and average within-syllable energy

• F0-related - within-syllable F0 range, difference between
minimum and average within-syllable F0

• Timing - syllable nucleus duration, pause duration (for
boundary labeling only)

Previous work in this area suggests that these features are
likely to be useful for labeling prosodic events. We extract features
independently for every syllable and do not consider dependencies
across syllable boundaries.

2.2. Lexical and syntactic features

The lexical representation of an utterance as well as its syntactic
structure play an important role in determining its prosody. A pre-
vious study [3] shows that certain syllable tokens, such as k aa n,
which occur mostly in content words, are much more likely to be
associated with accents than tokens such as dh ax, which occur
mostly in function words. Similarly, nouns are much more likely to
coincide with phrase boundaries than adjectives. However, train-
ing labels are absent in the unsupervised context, and this rela-
tionship cannot be learned directly from the data. We present an
incremental technique that allows us to use these cues to refine the
clusters generated using the acoustic features alone.

Our lexical features include the syllable tokens that make up
the sequence of words, as well as canonical stress patterns from
a standard pronunciation dictionary. We use part-of-speech (POS)
tags as shallow syntactic features.

3. Unsupervised labeling algorithm
Our unsupervised labeling system is based on widely-used clus-
tering algorithms for metric data. In this paper, we consider both
model-free techniques such as k-means and its probabilistic vari-
ant, fuzzy k-means, as well as model-based clustering algorithms
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as Gaussian mixtures. The basic approach is as follows. We
the clustering algorithm to partition the acoustic feature space
two clusters. One cluster represents the positive labels (accent
oundary) and the other, the negative labels (no accent, or no
dary). This step provides an initial, rough separation of the

ples into the two desired categories.
Assuming that we are able to uncover the mapping between
ter and prosody labels, the separation induced by the clustering
rithms is likely to produce output labels of average accuracy.
would like to improve on the results produced by acoustic fea-
clustering using lexical and syntactic features. In order to do
we identify the samples that are the most reliable representa-
of their respective clusters. Using these reliable samples, for
h the true classification accuracy is likely to be quite high, we
ate conditional probability distributions over the lexical and

actic features given the cluster labels. We use this information
assign cluster labels to less reliable samples. This step is car-
out iteratively until no further samples have to be reassigned

ter labels. In essence, given a sample xi = (ai, si, li, posi),
re the factors represent the acoustic feature vector, syllable to-
canonical stress label, and POS tag of the containing word,

ectively, we implement a MAP classifier with the cluster la-
as target classes.

c
∗

i = arg max
c∈(c0,c1)

p(c|ai, si, li, posi) (1)

= arg max
c∈(c0,c1)

p(ai, si, li, posi|c) p(c) (2)

n the large joint vocabulary, it is not possible to estimate this
t conditional distribution from the data corpus. Hence, we in-

a naı̈ve-Bayesian approximation, which simplifies the above
tion as follows.

c
∗

i = arg max
c∈(c0,c1)

p(ai|c) p(si, li|c) p(posi|c) p(c) (3)

= arg max
c∈(c0,c1)

p(c|ai) p(si, li|c) p(posi|c) (4)

cluster posteriors p(c|ai) are obtained from the partitioning al-
thm; the conditional distributions p(si, li|c) and p(posi|c) are

ated from the reliably clustered samples. The performance of
algorithm is dependent on the quality of the initial partitioning
rithm, and on the choice of a good reliability metric. These,
the iterative method used to reclassify less reliable samples,
iscussed in the following subsections.

Clustering algorithms

employ widely-used metric data clustering algorithms in order
btain an initial partitioning of the acoustic feature space.

• kmeans: This model-free algorithm produces a “hard”
partition of the feature space. Samples belong to their as-
signed cluster with unit probability and to other clusters
with zero probability.

• fuzzkm: Fuzzy k-means produces a soft partition of the
feature space. Samples may belong to more than one clus-
ter, the “degree of belongingness” being expressed by a
membership function. This function is usually so chosen
that its sum over all clusters is unity, permitting member-
ship values to be treated as cluster posterior probabilities.



• gmm: This is a model-based clustering technique that fits
a Gaussian-mixture probability distribution over the data.
The number of mixtures in the distribution represents the
number of clusters. The EM algorithm is used to estimate
parameters for this GMM (priors, means and covariances).

In our experiments, we partition the acoustic feature space into
two clusters, which represent the positive and negative categories
for the accent and boundary labeling tasks.

3.2. Evaluating reliability

We identify the most reliable representatives of each cluster by
evaluating a reliability metric for each sample xi from its acous-
tic correlates ai. We expect that the acoustic confusion associated
with reliable samples is small, and by extension, that their clus-
ter assignments yield high accuracy when the cluster labels are
mapped to the correct prosody labels. We experiment with the fol-
lowing reliability measures.

• km-euclid: This reliability metric compares the Eu-
clidean distances between the vector ai and the two cluster
means, and returns the absolute difference between them
(Eq. 5). The most reliable samples are those that lie close
to one cluster mean, but are distant from the mean of the
competing cluster.

RE(xi) = |dE(ai, m0) − dE(ai, m1)| (5)

• km-mahal: This is a slight variation of km-euclid in
that we estimate covariance matrices for each cluster, and
use the Mahalanobis distance instead of the Euclidean dis-
tance to evaluate sample reliability (Eq. 6).

RM (xi) = |dM (ai, m0, Σ0) − dM (ai, m1, Σ1)| (6)

• fkm-post: When properly initialized, the cluster mem-
bership function returned by fuzzy k-means for each sam-
ple xi can be treated as the posterior probability p(ci|ai) of
the cluster given the sample. A straightforward choice for
the reliability metric in this case is just the maximum mem-
bership value of the sample across the two clusters (Eq. 7).

RP (xi) = max
c∈(c0,c1)

p(c|ai) (7)

• gmm-mahal: This is a variation of km-mahal applied to
the gmm clustering technique. We use the Gaussian covari-
ance matrices to evaluate the reliability metric.

We evaluate the chosen reliability metric for each data point xi,
and re-rank the samples in descending order of reliability for the
next step - bootstrapping conditional probability models for the
lexical and/or syntactic features given the cluster labels.

3.3. Bootstrapping lexical and syntactic probability models

The lexical and syntactic conditional probability distributions are
estimated from the most reliably clustered samples. We expect
that the labeling accuracy for these samples is high enough that
the noise in estimating these distributions is low. There is a trade-
off in choosing T , the fraction of samples with which we estimate
these distributions. If T is small, the corresponding set of sam-
ples will be very reliable, but we will only have a small number
of samples from which to estimate the probability models. This
leads to sparsity issues and increases the estimation error. On the
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r hand, choosing a larger value of T leads to a larger “training
, but the samples closer to the tail of this set will not be very
ble, leading to noisy estimates. In our experiments, we vary
parameter and observe its effects on labeling performance.
Since we are dealing with potential sparsity issues, smooth-
he probability estimates becomes very important, even though
are only dealing with “unigrams”. For these initial experi-
ts, we use Lidstone (“add-λ”) smoothing. For instance, the
p(NNS|c0) is estimated as follows.

p(NNS|c0) =
λ + C(NNS, c0)

λ · VPOS + C(c0)
(8)

re C(·) represents the count of the argument, and VPOS is the
ber of unique POS tags. The smoothing parameter λ is set to
itable small value (say λ = 0.01). These estimates are used
mpute cluster posteriors for each sample by substituting into

product term in Eq. 4 and normalizing across the two clus-
Note that we do not use the acoustic cluster posteriors for
ans, which produces a unimodal posterior. The samples are
re-ranked with the cluster posteriors as the reliability metric,
this process is carried out iteratively to the point where the
ter posteriors converge (i.e., cluster reassignments dip below a
shold, say 0.5% of all samples).
The final step is to map cluster labels to the correct prosody
ls. We know from previous work on supervised labeling that
tive labels are much less likely than negative labels. For in-
ce, the fraction of syllables in the BU-RNC associated with
nt and boundary events is 34% and 17%, respectively. We use
heuristic to map the cluster with fewer samples to the positive
l and the competing cluster to the negative label.

4. Experimental results
compare the performance of our algorithm against two meth-
described in detail in [3]: a heuristic baseline that combines
l chance levels with an n-gram model of label sequences, and
pervised labeling technique that uses a combination of neural
orks and lexical-syntactic-prosodic language models to un-
r prosody labels.
We first cluster the acoustic features using one of the tech-
es mentioned in Sec. 3, evaluate the reliability metric for each
tered sample, and re-order the samples in decreasing order of
bility. Figures 1(a) and 1(b) show the variation in accent /
dary clustering accuracy as a function of T , the fraction of

ples chosen from the top of this list. It is clear that the accu-
is very high for small values of T , but drops off as T increases.
accuracy drop-off is much slower for boundary labeling than
for accent labeling.
We examined the effects of different values for T (5%, 10%,
for accent labeling; 20%, 30%, 40% for boundary labeling)

abeling accuracy, and determined that the algorithm is rela-
y robust for smaller values of T and only begins to degrade
n T is much larger. Tables 1 and 2 present the accent and
dary labeling performance, respectively, for different cluster-

techniques / reliability measures averaged across the above
ces for T . We report labeling accuracy, precision (P), recall
and F-score (F) for each method. For the boundary labeling

, we evaluate both overall (all syllables) and word-final (WF)
ble labeling performance; overall accuracy is always higher
WF accuracy, since we map all non-word-final syllables to
egative label.
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Table 1: Unsupervised accent labeling performance

Method Acc. P R F

Baseline 67.9% 0.55 0.40 0.46

Supervised 86.4% 0.78 0.85 0.81

kmeans / km-euclid 77.7% 0.62 0.87 0.73

kmeans / km-mahal 77.8% 0.63 0.87 0.73

fuzzkm / fkm-post 77.5% 0.62 0.87 0.73

gmm / gmm-mahal 77.8% 0.63 0.87 0.73

Table 2: Unsupervised boundary labeling performance

Method All WF P R F

Baseline 82.8% 72.8% 0.81 0.04 0.08

Supervised 91.6% 87.3% 0.72 0.85 0.78

kmeans / km-euclid 87.0% 78.6% 0.58 0.74 0.65

kmeans / km-mahal 88.5% 81.1% 0.64 0.69 0.66

fuzzkm / fkm-post 86.3% 77.6% 0.57 0.69 0.62

gmm / gmm-mahal 88.1% 80.5% 0.68 0.51 0.58

5. Discussion and future directions
In this paper, we presented an unsupervised prosody labeling al-
gorithm for detecting accent and boundary events in speech. With
very few assumptions, our algorithm achieved accent and bound-
ary labeling accuracies of 77.8% and 88.5%, respectively. These
figures significantly exceed the baseline performance, and com-
pare well to a supervised labeling system. The performance of this
system can be further improved by a clever choice of the reliabil-
ity metric - the measures used in this paper are obvious, but we
would like to explore other possibilities in the future. A limitation
of this algorithm is that it operates independently on each sample
and cannot incorporate context-based constraints on the label se-
quence, which have been shown to be important. We would like to
modify the algorithm in order to incorporate such constraints.
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In the longer term, we plan to use this unsupervised labeling
em to annotate different types of data, such as spontaneous
ch. This will enable us to explore the usefulness of such labels

spoken language applications such as speech recognition and
ch-to-speech translation.
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Figure 1: Variation of accent and boundary cluster-label accuracy as a function of “training” fraction T .
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