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ABSTRACT

Binary decision trees are an effective model structure in
language recognition. This paper presents several related
algorithmic steps to address data sparseness issues and com-
putational complexity. In particular, a tree adaptation step,
a recursive bottom-up smoothing step, and two variants of
the Flip-Flop approximation algorithm are introduced to
language detection and studied in the context of the NIST
Language Recognition Evaluation task.

1. INTRODUCTION

Let A = {α1, ..., αK} denote the set of symbols representing
the phonetic vocabulary of speech (covering one or several
languages), for example a multilingual phone set. Further-
more, let A = a1, ..., aT , a ∈ A, denote a set of random
variables corresponding to an utterance of length T . The
principle of the phonotactic modeling relies on statistical
constraints intrinsically governing such sequences, specifi-
cally it aims at estimating the probability of a language
L ∈ {L1, ..., LM} given A, or equivalently the probability of
A given the hypothesized language L:

P (A|L) = P (a1, ..., aT |L)

= P (a1|L)

T∏
t=2

P (at|at−1, ..., a1, L) (1)

The wide-spread use of N-grams in phonotactics involves
the following approximation to (1):

P (at|at−1, ..., a1, L) ≈ P (at|at−1, ..., at−N+1, L), (2)

i.e., a unit at time t is modeled as dependent on N −1 units
immediately preceding it. The N-gram models for N = 2
and N = 3 are referred to as “bigrams” and “trigrams”,
respectively. Naturally, the approximation accuracy grows
with the model order but is associated with an exponential
increase of O(KN ) in model complexity. The latter causes
robustness problems in the estimates and hence most prac-
tical N-gram systems today restrict themselves to just bi-
and trigrams [1].

Given the modeling above, to identify a language L ∈
{L1, ..., LM} the Bayes classifier makes a hypothesis based
on the maximum-likelihood rule:

L∗ = arg max
i

P (A|Li) (3)
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task of detecting a hypothesized language L∗ in A is
ically performed using the likelihood ratio test:

P (A|L = L∗)

P (A|L �= L∗)
≥ θ (4)

ject to a decision threshold θ.
he binary tree (BT) language models belong to a class
pproaches aiming at reducing the model complexity via
text clustering. Here, the probability of a current obser-
ion at (token) is conditioned on a set of token histories (a
ster of histories”). Since the clusters may include histo-
of arbitrary lengths, information from longer contexts
be modeled while the model complexity is only deter-
ed by the number of such clusters and may be chosen
ropriately. Obviously, a sensible choice of the cluster-
function is essential. The application of BTs for this
pose proved effective in our previous study in Language
ognition [2], in Speaker Recognition [3], and is the cen-
subject of this paper as well. The Section 2. describes
fficient search algorithm for tree building proposed orig-

lly by Nádas et al. [4]. An adaptation and a smoothing
coping with sparse samples are presented in Section

followed by experimental results obtained on the 2003
2005 NIST Language Recognition Evaluation data in

tion 4.

2. BUILDING BT LANGUAGE MODELS

onsider a sufficiently large training set A = {a1, ..., aT }
resenting the decoded speech and define the distribu-
YA = {p(αj |A)}1≤j≤K with the proportions of symbols
∈ A observed in A. The basic step in the BT build-
process is to find two disjoint subsets A1 ∪ A2 = A
g which two descendant nodes are created. To as-
the goodness of any such split, the entropy function

A) = −
∑K

j=1
p(αj |A) log2 p(αj |A) is generally adopted

6].
he data split is based on a set of predictors associated

h each element of A and a binary question Q – in our case
predictors are drawn from the history {at−1, at−2, ...} of
In general, Q may be composite, however, in practice,
ple expressions of the type ′′X ∈ S?′′ are used, whereby
s a selected predictor variable, say X = at−2, and S ⊂ A
specific subset of the symbol (e.g. phone) vocabulary.
splitting criterion then aims at finding Q∗ to maximize
reduction in the average entropy after the split. A re-

sive algorithm to build the tree can be summarized in
following steps [6, 2]:
Let n be the current node of the tree. Initially n is the
root.
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2. For each predictor variable Xi (i = 1, ..., N) find the
subset Sn

i , i.e. the question ′′Qi : Xi ∈ Sn
i ?′′, which

minimizes the average conditional entropy of the sym-
bol distribution Y at node n:

Hi(Y ) = p(Qi)H(Y |Qi) + p(Qi)H(Y |Qi)

3. Determine which of the N questions derived in Step 2
leads to the lowest entropy. Let this be question k, i.e.,

k = arg min
1≤i≤N

Hi(Y )

4. The reduction in entropy at node n due to question k
is

Rn(k) = H(Y ) − Hk(Y ) (5)

If this reduction is “significant,” store question k, cre-
ate two descendant nodes, n1 and n2, pass the data
corresponding to the conditions Xk ∈ Sn

k and Xk �∈ Sn
k ,

and repeat Steps 2-4 for each of the new nodes sepa-
rately.

Note that Rn(k) is deemed significant based on a preset
threshold.

Minimizing the overall average entropy is intuitive, as
good language models are expected on average to predict
tokens at from their context at−1, ... with minimum uncer-
tainty. It is easy to show that minimizing the prediction
entropy is equivalent to maximizing the training data like-
lihood [3]. Another interpretation by means of mutual in-
formation is also possible. By rearranging the Eq. (5):

R = H(Y ) − p(Qi)H(Y |Qi) − p(Qi)H(Y |Qi)

=
∑

q∈{Q,Q}

∑
α∈A

p(α, q) log2

p(α, q)

p(α)p(q)

= I(Q,Y )

it is clear that Step 3 maximizes the mutual information
between the split distribution and the node question.

The remaining task of finding the subset Sn
i is the main

source of computational complexity. An exhaustive search
involves 2K−1 entropy evaluations and is unsuitable for
most practical vocabulary sizes K. Bahl et al. [6] described
an iterative greedy search algorithm adopted in our previ-
ous work [2, 3]. In this paper we apply the “Flip-Flop”
algorithm introduced in [4] and compare the performance
to the greedy baseline.

2.1. Determining Sn
i using the Flip-Flop Algo-

rithm

The idea of the Flip-Flop (FF) algorithm [4] revolves around
a fact discovered by Breiman that the 2K−1−1 possible valid
Sn

i subsets (splits) can be replaced by searching only K − 1
selected subsets, provided only two classes (two different
symbols) are to be predicted [5].

To explain the process, let the data statistics of A be
represented in a K×2 table whose row indices x correspond
to the different values of a given Xi ∈ A, and column indices
to the two predicted classes, say 1 and 2. We seek the best
subset (split) of rows, SX . As shown in [5], the best subset is
among the sequence of subsets obtained by first ordering the
row indices x according to an increasing value of the class-
conditional probability, p(2|x) = p(x, 2)/{p(x, 1) + p(x, 2)}
(the class choice is arbitrary) and then forming a sequence
of sets: starting with an empty set adding one more index
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a time in this order, i.e. {i1}, {i1, i2}, ..., {i1, ..., iK−1}.
latter is referred to as the Two-Optimal Sequence [4].
ming all rows x ∈ SX to form a first row of a new 2×2

le, and, similarly all x /∈ SX to form the second row
lts in a 2 × 2 table with a certain mutual information.
cting the SX with the maximum in the Two-Optimal
uence is referred to as the Two-Optimal Selection.
owever, in our case K > 2 symbols of A need to be

dicted, so we have a K × K table with the probabilities
i, at) at hand. The FF algorithm copes with this prob-
by iteratively employing a Twoing step, in which, first,
columns y are merged (summed) according to some cho-
subset SY , such that K×K becomes K×2, whereby the
t and the second column contain sums of all y ∈ SY , and
SY , respectively. The FF algorithm has two alternative

iants, as follows.

.1.1. Variant FF1

aving applied the Twoing step, this faster version deter-
es SX via the Two-Optimal Selection. Then, the roles
and y in the original table are interchanged (“Flip”):

current SX is used to form a 2×K table, followed by a
rch for the best SY via the Two-Optimal Sequence and
Two-Optimal Selection. The roles are then again in-
hanged (“Flop”) and the process is repeated iteratively.
as et al. proved the convergence of this variant, how-

r, pointed out that the criterion considered in the Two-
imal Selection, i.e. the mutual information in the 2 × 2
le, is not necessarily the desired one [4].

.1.2. Variant FF2

he Two-Optimal Selection step is replaced by a K-
imal Selection in which the mutual information in the
2 (or 2 × K) is evaluated and maximized, rather than

one in the collapsed 2 × 2 table as before. While there
o convergence proof for this variant, it uses a direct ob-
ive for SX and hence for the Step 3 in the tree building
rithm. The sequence of steps in the FF2 algorithm can

summarized as follows [4]:

Start with an initial SX

Sum rows of the K×K table using SX to form a 2×K
table

Form sequence of candidate column splits via the Two-
Optimal Sequence

Choose SY via the K-Optimal Selection

Sum columns of the K × K table using SY to form a
K × 2 table

Form sequence of candidate row splits via the Two-
Optimal Sequence

Choose SX via the K-Optimal Selection

Go to Step 2, or quit

e used the relative change in the 2 × K mutual infor-
tion as a termination criterion.
he optimum solution SX is used as the Sn

i in the Eq.
of the recursive tree building algorithm (Step 3).

3. HANDLING DATA SPARSENESS

obustness issues and over-training present undoubtedly
hallenge. In the previous work [2] a leaf minimum oc-
ancy constraint was applied to prevent underpopulated
es. This constraint causes the BT models to grow adap-
ly to the data set size, which, however, may become a



problem with small training data amounts resulting in a rel-
atively few leaf nodes and hence too coarse models. In the
context of speaker verification [3], two mitigating techniques
were successfully applied, namely a tree adaptation and a
recursive bottom-up smoothing, bringing about consider-
able improvements in robustness. We now briefly outline
these two steps and apply them to language recognition.
3.1. Leaf Adaptation

In case of limited training data for a set of languages, a
language-independent (LI) BT model can be built from
pooled data to provide a robust tree structure as a basis
to create the language-specific BT model by adaptation. In
order to do so, the training set is partitioned according to
the fixed LI structure first, followed by an update of the leaf
distributions. Let Yl = {Pl(αj)}αj∈A denote a symbol dis-
tribution at a leaf l of the LI model, #(αj |l) the language-
specific count of αj observations at leaf l, and |l| the overall
count of the language-specific data in leaf l. The updated

leaf distribution Ŷl = {P̂l(αj)}αj∈A is then calculated as a
linear interpolation

P̂l(αj) =

[
bj

#(αj |l)

|l|
+ (1 − bj)Pl(αj)

]
/D (6)

with

bj =
#(αj |l)

#(αj |l) + r
(7)

where D normalizes the adapted values to satisfy∑
j
P̂l(αj) = 1, and r is an empirical value controlling

the extent of the update. The adapted BT model retains
the context resolution of the SI model, while capturing the
language-specific leaf statistics.

3.2. Bottom-Up Recursive Smoothing

Despite sufficient token counts in a leaf overall, individual
symbols may still occur sparsely in some leaves. The hier-
archical BT framework offers a convenient way to identify
more robust estimates for smoothing, namely by backing-off
to the parent distribution of a leaf. Each parent distribu-
tion is a pool of both child distributions and therefore is
more likely to contain more observations of a given symbol.
The following recursive smoothing algorithm for calculat-
ing the probability of a symbol at = αj given its context
{at−1, at−2, ...} proved successful [3]:

1. Determine the leaf l using X. Set a node variable n = l.

2. Calculate symbol probability

P̂smooth(αj) = bj P̂n(αj) + (1 − bj)P̂par(n)(αj)

where bj is as in (7) and P̂par(n)(αj) is obtained by
repeating Step 2 with n := par(n) recursively until
n = root.

Again, a linear interpolation scheme is used, whereby
par(n) denotes the parent node of n, and r is defined by
(7).

4. EXPERIMENTAL RESULTS

The binary-tree (BT) system was evaluated as a compo-
nent within the combined MIT Lincoln Laboratory (MIT-
LL) language detection system developed for the 2005 NIST
Language Recognition Evaluation (LRE) [7], described in
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% EER Data
Configuration Set

6dec, BT, S0/A0 11.7 D1
6dec, BT, S1/A0 8.6 D1
6dec, BT, S0/A1 7.4 D1
6dec, BT, S1/A1 7.4 D1
6dec, BT, S1/A1, BE 5.8 D1

6dec, BT, S1/A1 4.0 D2
12dec, BT, S1/A1 2.9 D2
12dec, BT, S1/A1, BE 2.1 D2

le 1. Equal-Error Rate performance overview.
1=Smoothing off/on, A0/1=Adaptation off/on,
=Back-end normalization

related paper [1]. This section details on the various
configurations, while using data consistent with [1].
. Development Corpus

o development data sets were used:

D1: training using the NIST LRE 1996 set and testing
on the NIST LRE 2003 evaluation comprising of 12
languages (CallFriend corpus). The 30-sec utterances
were taken for both the training and the test.

D2: extended training and evaluation data drawn
from the CallFriend, the Fisher, and the Mixer
corpora. The training dataset is referred to as
train.xcorpus.balanced and the testing set as
test 13lang in [1] and comprises of 13 languages.

. NIST LRE 2005 Data

primary LRE05 task was the detection of a hypoth-
ed language in 30-sec long telephone utterances [7].
speech material for this primary task was drawn from
OHSU corpus with 7 a-priori known target languages.
er conditions involving 13 languages, 3-sec, and 10-sec

erances were also defined [7].

. Phonetic Decoders

oding speech utterances into token sequences was per-
ed in three configurations using:

6dec: 6 MIT-LL phone recognizers in parallel (PPR),
whereby each tokenizer is connected to a separate set of
language BT models. The language model outputs in
each tokenizer branch are then either uniformly or non-
linearly combined to obtain the final language score.

12dec: MIT-LL 6dec + additional 6 phone decoders
trained on a variety of data as described in [1].

1dec: a single phone decoder with acoustic models
trained in the framework of the IBM large vocabulary
speech recognition

. Language Detection Performance

detection task was performed by means of the log-
lihood ratio test as outlined by Eq. (4) and as described
etail in [1].
he various combinations of BT adaptation and smooth-
in terms of their Equal-Error Rates (EER) are summa-
d in Table 1.
he trends allow us to conclude that both the adapta-
and the smoothing steps are highly beneficial noting

t smoothing helps in non-adapted trees, while adapted
s outperform the smoothing in isolation. The use of the
linear back-end classifier (as described [1], Section 2.7) is



Figure 1. The MIT-LL fused system and its indi-
vidual component performances on the NIST LRE
2005 primary task (from [1]). The relevant com-
ponents, i.e., the BTs and its Trigram baseline are
highlighted. See [1] for more information on the
overall system.

shown to fuse the language hypotheses more effectively than
the uniform averaging. Furthermore, as may be expected,
increasing the amount of training data (switching to D2, al-
though the test sets are different) as well as increasing the
number of decoders give a gain in accuracy. The latter indi-
cates that errors made during phonetic decoding are likely
a major adverse factor in phonotactic language recognition,
and can be mitigated by fusion.

The comparative results for the BT component with
adaptation and smoothing along with its comparable base-
line (smoothed trigrams) of the MIT-LL system obtained
on the NIST LRE 2005 primary task are shown as a DET
plot in the Figure 1 (from [1]).

Table 2 shows EER and computational expense results
obtained using the Flip-Flop (FF) algorithms. Note that,
in this experiment, the 1dec decoder was used. The com-
putational complexity is measured as the average number
of entropy evaluations made during the search for the opti-
mum node question per predictor. While the FF2 variant
reduced the complexity by a half compared to the base-
line search, the fast FF1 variant required considerably less
computation due to the fact that such entropy evaluation is
performed for a 2×2 table, as opposed to K×2. Across the
various conditions, the performance seems roughly compa-
rable for all three search algorithms. Although for K rang-
ing between 30 and 40 with the phonetic decoders used, the
tree building took on the order of seconds to complete using
standard hardware, for tasks with larger search space, i.e.
larger K, the Flip-Flop algorithms may therefore present a
very attractive choice to reduce the tree building time.

5. CONCLUSIONS

As measured on the NIST LRE datasets 2005 the BTs per-
form very well, favorably comparing to N-grams and other
approaches to language recognition (see Figure 1). It should
be pointed out that the BT approach is not viewed as a com-
peting replacement of the standard N-grams but rather its
effective counterpart in fusion. For a detailed analysis of
fusion experiments including the presented BT component,
the reader is referred to [1].
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% EER
Greedy FF1 FF2

2 Pred. 6.2 7.1 6.7
3 Pred. 7.1 6.8 6.9
4 Pred. 7.2 7.5 8.0
5 Pred. 6.7 7.5 8.2

Avg. C 146 ≈ 5 77

le 2. EER performance of the 1dec and the FF
orithms with varying number of predictors on
30-sec 2003 NIST LRE task (D1 set). Avg. C

nds for average number of entropy computations
predictor and node during the subset search

oth the adaptation and the recursive smoothing were
wn to be essential performance factors in the detection
, addressing the data sparseness and bringing about
reduction in the EER, relative to a baseline configura-
of [2]. This confirms the findings made in the speaker

ification task [3].
oth variants of the Flip-Flop algorithm resulted in an
uracy comparable to the baseline, however, brought a
siderable reduction in computation, effectively speeding
the tree building process by an order of magnitude, thus
ring an attractive alternative in larger training tasks.
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