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ABSTRACT

Feature extraction is the key procedure when aiming at robust
speaker identification. The most commonly used feature
extraction techniques work successfully only in clean or
matched environments. Accurate speaker identification is
made difficult due to a number of factors, with
handset/channel mismatch and environmental noise being the
most prominent. This paper presents a novel technique which
based on Gammatone filterbank (GTF) and independent
component analysis (ICA). The presented method first relies
on the Gammatone filterbank to emulate the human cochlea
frequency resolution. By using ICA, it extracts the dominant
components from these frequency banks. The extracted
features emphasis the difference in the statistical structures
among the speakers, which can model the distribution of the
individuals. Compared to the commonly used techniques, such
as linear predictive cepstral coefficients (LPCC), Mel-
frequency cepstrum coefficients (MFCC) and perceptual
linear predictive (PLP), the proposed method is more robust to
additive noises and yields higher recognition rate in mismatch
environments in a text-independent speaker identification
system.

Index Terms: Speaker Identification, Speaker Recognition,
Gammatone filterbank, Independent Component Analysis.

1. INTRODUCTION

A main focus in state-of-art automatic speaker identification
systems is finding efficient features for speech signal. So far,
the short-time spectral analysis has taken the leading role,
such as linear predictive cepstral coefficients (LPCC) [1],
Mel-frequency cepstrum coefficients (MFCC) [2] and
perceptual linear predictive (PLP) [3] have been shown fairly
good performance while used in conjunction with Gaussian
Mixture Models (GMM) [4]. However, a major deficiency in
speaker identification system is the lack of robustness in
mismatched training and testing environments. The mismatch
in acoustic characteristics between speech signals produced by
training speakers and those testing speakers has been causing
serious performance degradation for speaker identification
system. Meanwhile, modern speech enabled applications
require operation on signal of interest contaminated by high
level of noise. The spectral based features are sensitive to
various corrupted acoustic conditions and easily distorted by
additive noises. Therefore, these situations urge the demand
for a greater robustness in estimation of the speech parameters
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for mismatch environments and low environmental signal-to-
noise ratio (SNR) level. In our approach, two assumptions have
been taken into consideration to solve the problem. The first
assumption is based on that human auditory discrimination
typically manifests itself by capability of audio separation in
frequency. In the human inner ear’s cochlea, the input speech
signals induce mechanical vibration on the basilar membrane.
And each position of basilar membrane responds to some
localized frequency information of the speech signals [6]. Then
in Gammatone filterbank modelling, bandpass filters are
designed to resemble the characteristics of the frequency
selectivity of the basilar membrane. The second assumption is
related to the statistical separation power of the human
auditory system. Recently, independent component analysis
has been shown highly effective in extracting features from a
set of observed speech signals by reflecting the statistical
structure of the observed signals [7-9]. ICA assumes that the
speech signal can be decomposed into basis functions and
coefficients. The basis functions of speech maximize the
amount of information in the transformed domain, so that the
adapted individual basis functions obtained by ICA can be
used as features for speaker identification. However, the
relevance of ICA features is not entirely transparent and the
relation to the auditory system features, that are specific to a
speaker, is not clear [5].

In this paper, we apply ICA to speech signals after they pass
through a Gammatone filterbank in order to analyze its
intrinsic characteristics within the different human perceptual
frequency bands and to obtain a new set of features for
automatic speaker identification. The extracted features not
only represent the statistical structure within Gammatone
frequency bands but also capture correlations among these
frequency bands specific to the given speaker. Since ICA leads
a highly efficient representation of the observed speech signal,
the ICA features ignore the effect of the mismatch
environments and additive noises. We compared the GTF-ICA
features with LPCC, MFCC and PLP by the text-independent
speaker identification system on the TIMIT speech corpus and
NOISEX-92 noise database. The results prove that the
proposed features are more robust to mismatch environments
and additive noise and achieve the better identification rate.

2. GTF-ICA FEATURES EXTRACTION

Signal processing front end for extracting the feature set is an
important stage in any speaker identification system. In this
section, we propose one more successful technique to extract
the feature set from a speech signal for speaker identification
systems. This feature is based on Gammatone filterbank and
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independent component analysis. Idea of the proposed front
end is illustrated in Fig. 1.
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Figure I: Block diagram of GTF-ICA feature
extraction

2.1 Gammatone auditory filterbank processing

In our approach, we first pass speech signals into the
Gammatone filterbank. GTF modelling is a physiologically
based strategy followed in mimicking the structure of the
peripheral auditory processing stage [10]. In the human
auditory system, there are around 3000 inner hair cells along
the 35mm spiral path cochlea. Each hair cell could resonate to
a certain frequency within a suitable critical bandwidth. This
means that there are approximately 3000 bandpass filters in
the human auditory system. This high resolution of filters can
be approximated by specifying certain overlapping between
the contiguous filters. The impulse response of each filter
follows the Gammatone function shape. And the bandwidth of
each filter is determined according to the auditory critical
band (CB). The CB is the bandwidth of the human auditory
filter at different characteristic frequencies along the cochlea
path [10]. The frequency impulse response of a 16-channel
filterbank, covering 100-8000Hz band, is shown is Fig. 2.
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Figure 2: Frequency response of a 16-channel
Gammatone filterbank

From Fig. 2., the bandwidth of the channel is logarithmically
proportional with the centre frequency. Thus, GTF can very
well model the non-linear frequency characteristics of the
cochlea even it is belonging to the linear system family [10].
Assume the number of filters is N. Thus the output of the
Gammatone filterbank is a matrix Y, which has N rows, and
each row represents the output of each bandpass filter of
Gammatone filterbank in time domain.

2.2 Learning ICA speaker basis functions

The aim of the logarithm is to reduce the dynamic range of
filterbank outputs so that ICA method can easily capture the
statistic structure of the signal. The Fourier transform of the
resulting filterbank outputs are taken from the fact that human
aural discrimination typically manifests itself by capability of
audio separation in frequency domain. After that, absolute
values are taken from the frequency spectra, since the phase
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information has no effect on the speaker identification system
similar to human ear which is phase insensitive [11]. To extract
independent feature vectors from speech signal, ICA algorithm
is applied to the observation X. ICA assumes that the
observation X is a linear mixture of the independent
components ;.
N
X=A:S= 3 as,
i=1

where A is a NxN scalar square matrix, denotes the mixing
matrix, and the column vector a;’s are called the basis
functions generating the observed signal, whereas W=A"!
refers to ICA filters that transform the signals into independent
activations or source components.

S=W-X 2)
The objective of ICA is to infer both the unknown sources s;
and the unknown basis functions A or W from the observation
X. We use the maximizing negentropy learning rule to update
the basis function W. The details of the derivation can be seen
in [12]:

w < E|zg(w Tz)]— E[g' (sz)]w
W <« w/ ||w||

(M

3)
“4)

where z is the whiten data of X and g is a function defined by

g(y)=tanh (ay), 1<a<2.

Since the extracted basis functions w;’s from W are extracted
in frequency domain, they capture the correlations between
frequencies. These correlations can be considered as functions
of speaker’s glottal or nasal shape [1]. Therefore the GTF-ICA
feature matrix W is specific to individuals. Meanwhile, ICA
leads a highly efficient representation of the speech signal. It
does not only decocrrelate the second order statistics but also
reduce the higher-order statistical dependencies. Hence it
captures the main and essential variabilities of the speech
signal, such as gender, accent, age, speech rate and phones
realizations. On the other hand ICA ignores the other speech
variabilities, such as environments mismatch and additive
noise. As a result, GTF-ICA feature matrix reflects the given
speaker’s attributes, and at the same time, reduces the impact
of the mismatch environments and noise on the speech signal.
Also the feature matrix represents the statistical structure of the
speech signal in different frequency bands. And these
frequency bands are taken from Gammatone filterbank which
is designed to imitate the frequency resolution of human
hearing. Hence this new feature technique also introduces
concepts of human aural system to the processing, which
humanizes the speaker identification system and makes the
system more reliable.

3. SUPERVISED IDENTIFICATION OF
SPEAKERS

From the above processing, we can acquire a GTF-ICA feature
matrix specific to a given speaker. And this feature matrix
denotes the distribution of the speaker. To apply this feature
matrix to speaker identification system, we utilize a new
pattern classification method to identify the speaker rather than
the commonly wused classification techniques, such as
Euclidean distance measure, dynamic time warping (DTW) [1]
and maximum likelihood estimation [4].
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The idea of the new algorithm is that the basis functions W
are estimated from the observation X so that the random
variables s;’s are as independent as possible. Assume that
feature matrix W™ are trained from a given speaker’s speech
data. Test data from a particular speaker will induce a
similarly low degree of independence when test data is
projected on this trained feature matrix. However, if test data
from a different speaker is used, her/his data is unlikely to
produce a similarly low degree of independence [5]. The
feature matrix is not designed to minimize independence on
data coming from a speaker characterized by a different
correlation structure in the frequency domain. Therefore, the
identification score I is defined as:

S test — W train X test (5)
N
Uy 8= |yl ©)

i<j
where r; is the normalised mutual information between
random variables s; representing independent components, and
P is a positive constant. In our approach, for the sake of

r;

simplification, we measure the cross-correlation of s; instead
of calculating the mutual information between them, since the

low degree of independence induces low degree of correlation.

And P is chosen empirically equate to 2.

For speaker identification, a group of M speakers
M=[1,2,...M] is represented by their GTF-ICA feature
matrices w frain | yy frainyy tmain - The identity of the test

speaker is determined by finding the minimum value of T :
Sy 1<K<M @)

M = arg min(I"
K

train
Wy

where M is the expected identity of the test speaker, and I" is
given in equation (6).

4. EXPERIMENTAL RESULTS

Text-independent speaker identification tasks were carried out
using TIMIT and NOISEX-92 speech databases to evaluate
the performance of the proposed algorithm. TIMIT is a noise
free speech database recorded using a high quality
microphone sampled at 16 KHz. TIMIT contains utterances of
630 speakers from 8 different dialects of spoken English, and
for each speaker there are total of 10 sentences arranged in 3
categories (dialect calibration, random contextual variant and
phonetically compact sentences). NOISEX-92 is a noise
database which provides various noises recorded in real
environments. Both of these databases are standard databases
commonly used in benchmarking speech processing systems.
In our proposed system, 100 speakers (12 or 16 speakers were
randomly selected from each dialect) from TIMIT were used.
The period of training sentences is about 18 seconds and of
testing sentences is 5 seconds. 30-channel Gammatone
filterbank was adopted, since that can best characterise the
human aural processing for speech signal sampled at 16 KHz.
To compare the GTF-ICA algorithm to other commonly used
feature extraction techniques, we also generated a baseline
system based on 24 orders LPCC, MFCC, PLP (without using
the delta coefficients) and 32 components GMMs.

The identification rate is defined by:

®

. . . N
identification rate = —<™ x 100%

total
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where Neorer denotes the number of the correctly identified
speakers and Ny, is the total number of speakers used to be
identified. Some cases were considered in our experiments to
investigate the robustness of GTF-ICA feature matrix to
mismatch and noisy environments.

4.1 Speaker identification in clean environment

In this experiment, we tested our proposed algorithm in an
ideal situation: both training and testing sentence were
recorded in clean environments. Table 1 lists the identification
results of different feature extraction techniques.

Tablel: 1dentification rate (%) for different feature
extraction techniques

GTF-ICA
97.0

LPCC
96.0

MFCC
97.0

PLP
90.0

rate

Table 1 shows that the best result was obtained by the GTF-
ICA and MFCC methods. Meanwhile the same speakers were
misidentified by using both of these two methods. That proves
the GTF-ICA feature matrix is similar to MFCC, and it
efficiently represents the variability of speaker and denotes the
distribution of individual.

4.2 Feature investigation in noisy environment

In this experiment, we investigated the effect of noise on
different feature extraction techniques. The simulation was
carried on as following: Reference feature vectors (or matrices)
were generated from a speech signal, after that, various noises
were added to this speech signal to produce noisy feature
vectors (or matrices). Then we compared them with the
reference (clean) feature to find the similarity between them.
The similarity of two vectors (or matrices) was measured by
calculating the cross-correlation coefficient between them. The
higher value of cross-correlation coefficient means higher
similarity. The additive noises are white Gaussian noise and
some other colour noises from NOISEX-92 database, i.e.,
factory noise, vehicle interior noise, and babble noise. The
simulation results are summarized in figures 3 to 6.

=0 T = U

e
Figure 3: Cross-correlation between clean and noisy features
produced in Gaussian white noisy environment

oo on
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Figure 4: Cross-correlation between clean and noisy features
produced in factory noisy environment
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Figure 5: Cross-correlation between clean and noisy
features produced in vehicle interior noisy environment
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Figure 6: Cross-correlation between clean and noisy
features produced in babble noisy environment

It is evident that the GTF-ICA feature matrices produced in
noisy environments are similar with those produced in clean
environment. However, LPCC, MFCC, and PLP features vary
largely when the signal contaminated by noises. Therefore, the
GTF-ICA feature matrix is less sensitive to additive noises

4.3 Feature investigation in mismatch environments

In this experiment, the effect of mismatch environments was
investigated. Two additive noises, white and factory noises
with various SNR levels were added to the training and testing
speech utterances, respectively. The main reason we chose
these two types of noise is that the conventional techniques
work extremely poor in this situation.The simulation results
are shown in Table 2.

Table 2: 1dentification rate (%) in mismatch environments

rate tr=clean | tr=clean | tr=25dB | tr=20dB
te=20dB | te=15dB | te=20dB | te=20dB
GTF-ICA 75.0 66.0 24.0 14.0
LPCC 70.0 48.0 16.0 9.0
MFCC 71.0 56.0 19.0 12.0
PLP 42.0 17.0 4.0 4.0

where ‘tr’ denotes the training sentences with additive white
Gaussian noise and ‘te’ denotes the testing sentences with
additive factory noise respectively. Apparently, the best
performance is achieved by using GTF-ICA method, which
proves that our proposed algorithm is more robust to
mismatch environments compared with all the other
commonly used feature extraction techniques.

5. CONCLUSIONS

In our work, we proposed a new feature extraction method,
which based on Gammatone filterbank modelling and
independent component analysis. The extracted feature
efficiently represents the statistical structure of the speech
signal, and captures the correlation between different
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Gammatone frequency bands. The proposed feature does not
only denote the distribution of individual speakers but also
minimize the effect of the additive noise and mismatch
environments. In comparison to the conventional LPCC,
MFCC and PLP techniques, our new algorithm is more robust
to additive noises and achieves better identification
performance in mismatch environments. However, the
computational cost of the new algorithm is higher than the
conventional techniques due to the need to compute the cross-
correlation between the components. In our future research, we
will be focusing on finding ways to reduce this cost.
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