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ABSTRACT 

Feature extraction is the key procedure when aiming at robust 

speaker identification. The most commonly used feature 

extraction techniques work successfully only in clean or 

matched environments. Accurate speaker identification is 

made difficult due to a number of factors, with 

handset/channel mismatch and environmental noise being the 

most prominent. This paper presents a novel technique which 

based on Gammatone filterbank (GTF) and independent 

component analysis (ICA). The presented method first relies 

on the Gammatone filterbank to emulate the human cochlea 

frequency resolution. By using ICA, it extracts the dominant 

components from these frequency banks. The extracted 

features emphasis the difference in the statistical structures 

among the speakers, which can model the distribution of the 

individuals. Compared to the commonly used techniques, such 

as linear predictive cepstral coefficients (LPCC), Mel-

frequency cepstrum coefficients (MFCC) and perceptual 

linear predictive (PLP), the proposed method is more robust to 

additive noises and yields higher recognition rate in mismatch 

environments in a text-independent speaker identification 

system. 

Index Terms:  Speaker Identification, Speaker Recognition, 

Gammatone filterbank, Independent Component Analysis. 

1. INTRODUCTION 

A main focus in state-of-art automatic speaker identification 

systems is finding efficient features for speech signal. So far, 

the short-time spectral analysis has taken the leading role, 

such as linear predictive cepstral coefficients (LPCC) [1], 

Mel-frequency cepstrum coefficients (MFCC) [2] and 

perceptual linear predictive (PLP) [3] have been shown fairly 

good performance while used in conjunction with Gaussian 

Mixture Models (GMM) [4]. However, a major deficiency in 

speaker identification system is the lack of robustness in 

mismatched training and testing environments. The mismatch 

in acoustic characteristics between speech signals produced by 

training speakers and those testing speakers has been causing 

serious performance degradation for speaker identification 

system. Meanwhile, modern speech enabled applications 

require operation on signal of interest contaminated by high 

level of noise. The spectral based features are sensitive to 

various corrupted acoustic conditions and easily distorted by 

additive noises. Therefore, these situations urge the demand 

for a greater robustness in estimation of the speech parameters 
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 mismatch environments and low environmental signal-to-

se ratio (SNR) level. In our approach, two assumptions have 

n taken into consideration to solve the problem.  The first 

umption is based on that human auditory discrimination 

ically manifests itself by capability of audio separation in 

quency. In the human inner ear’s cochlea, the input speech 

nals induce mechanical vibration on the basilar membrane. 

d each position of basilar membrane responds to some 

alized frequency information of the speech signals [6]. Then 

Gammatone filterbank modelling, bandpass filters are 

igned to resemble the characteristics of the frequency 

ectivity of the basilar membrane. The second assumption is 

ated to the statistical separation power of the human 

itory system. Recently, independent component analysis 

 been shown highly effective in extracting features from a 

 of observed speech signals by reflecting the statistical 

cture of the observed signals [7-9]. ICA assumes that the 

ech signal can be decomposed into basis functions and 

fficients. The basis functions of speech maximize the 

ount of information in the transformed domain, so that the 

pted individual basis functions obtained by ICA can be 

d as features for speaker identification. However, the 

evance of ICA features is not entirely transparent and the 

ation to the auditory system features, that are specific to a 

aker, is not clear [5]. 

this paper, we apply ICA to speech signals after they pass 

ough a Gammatone filterbank in order to analyze its 

rinsic characteristics within the different human perceptual 

quency bands and to obtain a new set of features for 

omatic speaker identification. The extracted features not 

y represent the statistical structure within Gammatone 

quency bands but also capture correlations among these 

quency bands specific to the given speaker. Since ICA leads 

ighly efficient representation of the observed speech signal, 

 ICA features ignore the effect of the mismatch 

ironments and additive noises. We compared the GTF-ICA 

tures with LPCC, MFCC and PLP by the text-independent 

aker identification system on the TIMIT speech corpus and 

ISEX-92 noise database. The results prove that the 

posed features are more robust to mismatch environments 

 additive noise and achieve the better identification rate. 

. GTF-ICA FEATURES EXTRACTION 

nal processing front end for extracting the feature set is an 

portant stage in any speaker identification system. In this 

tion, we propose one more successful technique to extract 

 feature set from a speech signal for speaker identification 

tems. This feature is based on Gammatone filterbank and 
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independent component analysis. Idea of the proposed front 

end is illustrated in Fig. 1. 

2.1 Gammatone auditory filterbank processing 

In our approach, we first pass speech signals into the 

Gammatone filterbank. GTF modelling is a physiologically 

based strategy followed in mimicking the structure of the 

peripheral auditory processing stage [10]. In the human 

auditory system, there are around 3000 inner hair cells along 

the 35mm spiral path cochlea. Each hair cell could resonate to 

a certain frequency within a suitable critical bandwidth. This 

means that there are approximately 3000 bandpass filters in 

the human auditory system. This high resolution of filters can 

be approximated by specifying certain overlapping between 

the contiguous filters. The impulse response of each filter 

follows the Gammatone function shape. And the bandwidth of 

each filter is determined according to the auditory critical 

band (CB). The CB is the bandwidth of the human auditory 

filter at different characteristic frequencies along the cochlea 

path [10]. The frequency impulse response of a 16-channel 

filterbank, covering 100-8000Hz band, is shown is Fig. 2. 

From Fig. 2., the bandwidth of the channel is logarithmically 

proportional with the centre frequency. Thus, GTF can very 

well model the non-linear frequency characteristics of the 

cochlea even it is belonging to the linear system family [10]. 

Assume the number of filters is N. Thus the output of the 

Gammatone filterbank is a matrix Y, which has N rows, and 

each row represents the output of each bandpass filter of 

Gammatone filterbank in time domain. 

2.2 Learning ICA speaker basis functions

The aim of the logarithm is to reduce the dynamic range of 

filterbank outputs so that ICA method can easily capture the 

statistic structure of the signal. The Fourier transform of the 

resulting filterbank outputs are taken from the fact that human 

aural discrimination typically manifests itself by capability of 

audio separation in frequency domain. After that, absolute 

values are taken from the frequency spectra, since the phase 
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ormation has no effect on the speaker identification system 

ilar to human ear which is phase insensitive [11]. To extract 

ependent feature vectors from speech signal, ICA algorithm 

applied to the observation X. ICA assumes that the 

ervation X is a linear mixture of the independent 

ponents si.

            
N

1i
i

s
i

aSAX                                      (1) 

ere A is a NN  scalar square matrix, denotes the mixing 

trix, and the column vector ai’s are called the basis 

ctions generating the observed signal, whereas W=A-1

ers to ICA filters that transform the signals into independent 

ivations or source components. 

XWS                                                      (2) 

e objective of ICA is to infer both the unknown sources si

 the unknown basis functions A or W from the observation 

We use the maximizing negentropy learning rule to update 

 basis function W. The details of the derivation can be seen 

[12]: 

wz)(wg'Ez)zg(wEw
TT               (3)

     ww/w                                      (4) 

ere z is the whiten data of X and g is a function defined by 

)() ayy tanh , 21 a .
ce the extracted basis functions wi’s from W are extracted 

frequency domain, they capture the correlations between 

quencies. These correlations can be considered as functions 

speaker’s glottal or nasal shape [1]. Therefore the GTF-ICA 

ture matrix W is specific to individuals. Meanwhile, ICA 

ds a highly efficient representation of the speech signal. It 

s not only decocrrelate the second order statistics but also 

uce the higher-order statistical dependencies. Hence it 

tures the main and essential variabilities of the speech 

nal, such as gender, accent, age, speech rate and phones 

lizations. On the other hand ICA ignores the other speech 

iabilities, such as environments mismatch and additive 

se. As a result, GTF-ICA feature matrix reflects the given 

aker’s attributes, and at the same time, reduces the impact 

the mismatch environments and noise on the speech signal. 

o the feature matrix represents the statistical structure of the 

ech signal in different frequency bands. And these 

quency bands are taken from Gammatone filterbank which 

designed to imitate the frequency resolution of human 

ring. Hence this new feature technique also introduces 

cepts of human aural system to the processing, which 

anizes the speaker identification system and makes the 

tem more reliable. 

. SUPERVISED IDENTIFICATION OF 

SPEAKERS 

m the above processing, we can acquire a GTF-ICA feature 

trix specific to a given speaker. And this feature matrix 

otes the distribution of the speaker. To apply this feature 

trix to speaker identification system, we utilize a new 

tern classification method to identify the speaker rather than 

 commonly used classification techniques, such as 

clidean distance measure, dynamic time warping (DTW) [1] 

 maximum likelihood estimation [4]. 



The idea of the new algorithm is that the basis functions W

are estimated from the observation X so that the random 

variables si’s are as independent as possible. Assume that 

feature matrix Wtrain are trained from a given speaker’s speech 

data. Test data from a particular speaker will induce a 

similarly low degree of independence when test data is 

projected on this trained feature matrix. However, if test data 

from a different speaker is used, her/his data is unlikely to 

produce a similarly low degree of independence [5]. The 

feature matrix is not designed to minimize independence on 

data coming from a speaker characterized by a different 

correlation structure in the frequency domain. Therefore, the 

identification score  is defined as: 
testtraintest

XWS                              (5) 
N

ji

ij
test

W
r)(Strain

                             (6) 

where rij is the normalised mutual information between 

random variables si representing independent components, and 

is a positive constant. In our approach, for the sake of 

simplification, we measure the cross-correlation of si instead 

of calculating the mutual information between them, since the 

low degree of independence induces low degree of correlation. 

And is chosen empirically equate to 2.

For speaker identification, a group of M speakers 

M=[1,2,…M] is represented by their GTF-ICA feature 

matrices train
1W , train

2W ,… train
MW . The identity of the test 

speaker is determined by finding the minimum value of

K

test

W
))(Smin(M train

K

argˆ MK1 (7) 

where M̂ is the expected identity of the test speaker, and  is 

given in equation (6). 

4. EXPERIMENTAL RESULTS 

Text-independent speaker identification tasks were carried out 

using TIMIT and NOISEX-92 speech databases to evaluate 

the performance of the proposed algorithm. TIMIT is a noise 

free speech database recorded using a high quality 

microphone sampled at 16 KHz. TIMIT contains utterances of 

630 speakers from 8 different dialects of spoken English, and 

for each speaker there are total of 10 sentences arranged in 3 

categories (dialect calibration, random contextual variant and 

phonetically compact sentences). NOISEX-92 is a noise 

database which provides various noises recorded in real 

environments. Both of these databases are standard databases 

commonly used in benchmarking speech processing systems.  

In our proposed system, 100 speakers (12 or 16 speakers were 

randomly selected from each dialect) from TIMIT were used. 

The period of training sentences is about 18 seconds and of 

testing sentences is 5 seconds. 30-channel Gammatone 

filterbank was adopted, since that can best characterise the 

human aural processing for speech signal sampled at 16 KHz. 

To compare the GTF-ICA algorithm to other commonly used 

feature extraction techniques, we also generated a baseline 

system based on 24 orders LPCC, MFCC, PLP (without using 

the delta coefficients) and 32 components GMMs. 

The identification rate is defined by: 

%100
N

N
ratetionidentifica

total

correct                         (8) 
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ere Ncorrect denotes the number of the correctly identified 

akers and Ntotal is the total number of speakers used to be 

ntified. Some cases were considered in our experiments to 

estigate the robustness of GTF-ICA feature matrix to 

smatch and noisy environments.  

 Speaker identification in clean environment 

this experiment, we tested our proposed algorithm in an 

al situation: both training and testing sentence were 

orded in clean environments. Table 1 lists the identification 

ults of different feature extraction techniques. 

Table1: Identification rate (%) for different feature 

extraction techniques 

 GTF-ICA LPCC MFCC PLP 

rate  97.0 96.0 97.0 90.0 

ble 1 shows that the best result was obtained by the GTF-

 and MFCC methods. Meanwhile the same speakers were 

sidentified by using both of these two methods. That proves 

 GTF-ICA feature matrix is similar to MFCC, and it 

iciently represents the variability of speaker and denotes the 

tribution of individual.  

 Feature investigation in noisy environment 

this experiment, we investigated the effect of noise on 

ferent feature extraction techniques. The simulation was 

ried on as following: Reference feature vectors (or matrices) 

re generated from a speech signal, after that, various noises 

re added to this speech signal to produce noisy feature 

tors (or matrices). Then we compared them with the 

erence (clean) feature to find the similarity between them. 

e similarity of two vectors (or matrices) was measured by 

culating the cross-correlation coefficient between them. The 

her value of cross-correlation coefficient means higher 

ilarity.  The additive noises are white Gaussian noise and 

e other colour noises from NOISEX-92 database, i.e., 

tory noise, vehicle interior noise, and babble noise. The 

ulation results are summarized in figures 3 to 6. 

igure 3: Cross-correlation between clean and noisy features 

produced in Gaussian white noisy environment 

igure 4: Cross-correlation between clean and noisy features 

produced in factory noisy environment 



Figure 5: Cross-correlation between clean and noisy 

features produced in vehicle interior noisy environment   

Figure 6: Cross-correlation between clean and noisy 

features produced in babble noisy environment 

It is evident that the GTF-ICA feature matrices produced in 

noisy environments are similar with those produced in clean 

environment. However, LPCC, MFCC, and PLP features vary 

largely when the signal contaminated by noises. Therefore, the 

GTF-ICA feature matrix is less sensitive to additive noises 

4.3 Feature investigation in mismatch environments 

In this experiment, the effect of mismatch environments was 

investigated. Two additive noises, white and factory noises 

with various SNR levels were added to the training and testing 

speech utterances, respectively. The main reason we chose 

these two types of noise is that the conventional techniques 

work extremely poor in this situation.The simulation results 

are shown in Table 2.  

Table 2: Identification rate (%) in mismatch environments 

rate
tr=clean 

te=20dB 

tr=clean

te=15dB

tr=25dB

te=20dB

tr=20dB

te=20dB

GTF-ICA 75.0 66.0 24.0 14.0 

LPCC 70.0 48.0 16.0 9.0 

MFCC 71.0 56.0 19.0 12.0 

PLP 42.0 17.0 4.0 4.0 

where ‘tr’ denotes the training sentences with additive white 

Gaussian noise and ‘te’ denotes the testing sentences with 

additive factory noise respectively. Apparently, the best 

performance is achieved by using GTF-ICA method, which 

proves that our proposed algorithm is more robust to 

mismatch environments compared with all the other 

commonly used feature extraction techniques. 

5. CONCLUSIONS 

In our work, we proposed a new feature extraction method, 

which based on Gammatone filterbank modelling and 

independent component analysis. The extracted feature 

efficiently represents the statistical structure of the speech 

signal, and captures the correlation between different 
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mmatone frequency bands. The proposed feature does not 

y denote the distribution of individual speakers but also 

nimize the effect of the additive noise and mismatch 

ironments. In comparison to the conventional LPCC, 

CC and PLP techniques, our new algorithm is more robust 

additive noises and achieves better identification 

formance in mismatch environments. However, the 

putational cost of the new algorithm is higher than the 

ventional techniques due to the need to compute the cross-

relation between the components. In our future research, we 

l be focusing on finding ways to reduce this cost. 
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