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Abstract

The knowledge of glottal closure and opening instants (GCI/GOI)
is useful for many speech analysis applications. A Pitch-
synchronous waveform encoding of voice is one such application.
In this paper, a dynamic programming is employed to solve for
the global close/open phase segmentation based on the polyno-
mial parametric waveform of the derivative glottal waveform and
its quasi-periodicity. Not only does the algorithm identify GCIs,
but also the elusive GOIs, and as a by-product, the parameters of
the glottal excitation waveform. The results show its effectiveness
compared with a classical method. Its application to parametric
voice encoding which allows for simple time-pitch scaling as well
as voicing quality conversion is demonstrated.
Index Terms: speech coding, glottal closure instant detection,
glottal opening instant, voice transformation.

1. Introduction
Accurate detection of glottal closure instants (GCI) allows for
many useful pitch-synchronous operations. Closed-phase linear
prediction has been shown to give more accurate vocal tract fil-
ter due to little source-tract interaction in those periods. Speaker
identification, pathological voice detection, pitch tracking and low
bit-rate coding can also benefit from the knowledge of GCIs.

Numerous techniques for GCI detection have been proposed in
the past. Most are based on detecting discontinuity or peaks from
some measurements of speech. The peaks of LPC residual energy
were used in [1] while in [2], abrupt change in Kalman filtering in-
novation error indicates such changes. In [3], an energy-weighted
group delay (EWGD) was proposed. This method provides a very
effective and efficient GCI detection although its false alarm rate
can go up significantly for noisy signal. While a large window
used in the averaging of EWGD method improves false alarm
rate (FAR), it may compromise the miss-detection rate (MDR) as
well as the accuracy, which refers to how close the detection is
to the real value (see a quantitative analysis in [4]). Recently, a
dynamic programming approach with a variety of cost functions
related to pitch deviation, quasi-periodicity, combined with some
other heuristic cost terms [5] was proposed, giving considerable
improvements over earlier methods.

GCI detection is a classical problem, receiving a great deal of
attention. The detection of GOIs, on the other hand, has received
relatively less consideration. One reason is because the opening
instant is much harder to identify or even defined. Another rea-
son is due to its less crucial effect on the perceptual quality of a
voice. While a closure generates significant excitation, with an
abrupt change in waveform, an opening instant tends to be grad-
ual. A number of works have been presented on how various tools
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ond to the opening instants [6][7] but none has really made
evaluation on a real speech corpus.

Recently, an interest of speech or voice coding that is flexi-
for modification has become more widespread. Instead of just
ing for compression and reconstruction faithfulness, a more
ctured approach has been developed. For example, the HVXC
ch coder which encodes the glottal excitation by sines+noise
el, allows for time-scaling [8]. When voice is parametrically

oded in such a way that its perceptual properties can be mod-
, the whole host of applications, such as emotion modifica-
and intelligibility enhancement, can be easily implemented.

ile spectral-based model is easy to obtain and has been used
ctively, a more physical model offers more intuitive control of
parameters to effect different articulations and voicing quality.
n, this requires pitch-synchronous analysis and the identifica-
of the related parameters such as the vocal tract filter and the

tal excitation waveform.

In this paper, an algorithm to identify both GCIs and GOIs is
osed and its performance is investigated. The dynamic pro-
ming with cost functions based mainly on fitting a parametric

el of the derivative glottal waveform is first described. The
uation criterion and results are then presented. At the end, its
lication in encoding a sustained voice parametrically that al-
s for many types of modification is demonstrated.

2. Dynamic Programming for GCI/GOI
Detection

ynamic programming (DP) calculates the optimal path through
ttice of candidate points where the decision at any particular
t only depends on the objective function of that point and the
ious ones. For our problem, the cost function to be mini-
ed is based on a combination of polynomial waveform fitting
the quasi-periodicity nature of the derivative glottal waveform,
ected from inverse filtering the speech signal. The robustness
inst non-ideal LPC residual shape is achieved through the flex-
ty in the cost function as well as other means to constrain the
lem toward the right solution. The composite cost function is
ented by

C(i, j) = CP (i, j) + λ · CQ(i, j) (1)

re CP and CQ are waveform error cost function and the
s-correlation measurements respectively while λ is the relative
ghting.
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Figure 1: Two periods of Rosenberg’s derivative glottal wave-
form model showing the period (T0), glottal closure instant (GCI),
closed-phase (CP) and open-phase (OP)

2.1. Waveform Error Cost

The derivative glottal waveform can be presented by Rosenberg’s
model [9]

g(n) =

(
2agn/fs − 2bg(n/fs)

2, 0 ≤ n ≤ T0 · OQ · fs

0, T0 · OQ · fs ≤ n ≤ T0 · fs

(2)

ag =
27 · AV

4 · (OQ2 · T0)
(3)

bg =
27 · AV

4 · (OQ3 · T 2

0
)

(4)

where T0 is the fundamental period, fs is the sampling frequency,
AV is the amplitude parameter, and OQ is the open-quotient of the
glottal source. An example of the waveform is shown in Figure 1.

Let s indicate the phase of the glottal waveform where s = 0
is the close-phase (CP) and s = 1 is the open-phase (OP). The cost
function of a segment between time sample t1 and t2 for both CP
and OP is the squared L2-norm

CP,s(t1, t2) = ||xt1:t2 − x̂||22 (5)

where for s = 0, x̂ is the mean of xt1:t2 . Even though the model
expects this to be zero, using the mean gives extra robustness to
non-ideal waveform. For s = 1, x̂ is generated from equation (2)
using ag and bg estimated from least-squares regression. If ag or
bg estimates are less than zeros, it is not the right shape and the cost
is set to a large number. To increase the robustness, local search
is also performed for open-phase fitting, while for close-phase, an
offset is allowed to avoid spikes which commonly occur in LPC
residual.

2.2. Cross-correlation Cost

To tap into the quasi-periodicity expected in the LPC residual
waveform, the cross-correlation cost between two segments, simi-
larly used in [5], is

CQ,s(x1,x2, γ) = −max(CrossCorrγ(x1, x2)) (6)

where γ is the maximum lag used (set to correspond to 1.5 ms in
the experiments).

Since both cost terms, CP and CQ, are the sum of time-sample
products, they are comparable in magnitude so λ is set to one in
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xperiments. At each candidate point j, for each mode s, the
functions with respect to a set of preceding marker candidates
Is, are calculated by

Js(i, j) = mink∈K
s
′
{Js′ (k, i) + Cs′(i, j)} (7)

re s′ is the negation of s, which means that the constraint of
rnate open and close phase is enforced. The set Is and Ks′ con-
s allowable candidates for each mode: Is = {i|j − Δs

max <
j−Δs

min} and Ks = {k|i−Δs
max < k < i−Δs

min}. Δs
max

t to correspond to maximum CP or OP duration. Here, maxi-
pitch period (20 ms) is used for OP and a fraction smaller

CP. Δs
min is, however, set to zero for s = 0 to allow for

-existent CP which commonly occurs. Together with candi-
selection later described, robust identification for such case is

sible. For s = 1, Δs
min is set to a fraction of minimum pitch

od (2 ms). This helps reduce computation.
Because three points can only cover one period (CP and OP),
calculation of CQ(i, j) in equation (1), used in equation (7),
ally depends on two further points back. In order to keep the
al optimality, we have to look back two points and select the
t that gives minimum total cost at point k in (7). It is the same

k-tracing used in general DP with point k being the end point.
The first period may be assumed to be CP. However, in our

eriments, either case is allowed for truncation robustness. Two
es are therefore populated and, at the end of the segment, the
cost that is smaller is chosen and back-tracking is executed to
in alternate GCIs and GOIs.

Candidate Selection

areful selection of candidate points can help reduce the amount
omputation time. It also affects the performance, both in terms
etection rate trade-off and the accuracy. One possible way is
hoose positive zero crossings of the inverse-filtered signal. To
e sure opening instant candidates are included, an extra point
to be added for every positive zero-crossing. Alternatively,
can first apply EWGD method which has been shown to de-
impulses at the GCIs as well as some GOIs. By using a narrow

raging window, it is likely that GOIs will be detected. Besides,
g a narrow window generates an over-complete set of candi-
s with higher accuracy for the correct points [4]. The key is
enerate a redundant set of candidate points, which also include
e accurate ones, for the DP to choose from.
An experiment was carried out to evaluate initial candidate
against ground truth GCIs, to be described in section 3.1. It
und that using zero crossings as candidates can give more ac-
te results but with a large number of candidates. On the other

d, EWGD with a very narrow averaging window gives much
amount of data but not very accurate. We combine the two

hods by first performing narrow-windowing EWGD and then
for the adjacent zero-crossings on its left (A) (potentially

e” opening instant) and right (B) (potentially more accurate
ing instant). From inspections, sometimes CP never exists, es-
ially in female voice. We therefore assign an extra point (B+1)
he candidate set so that the DP can have more choices and at
same time, allows for no CP events which can now be modeled
aving CP period of one sample. Table 1 shows the accuracy
sured against ground truth data and the number of candidates
voice segment. Accuracy is defined as the percentage of those
ples, excluding false alarms and misses, that fall within 25 ms
he references. The RMS measures the standard deviation of all



Table 1: Initial candidates characteristics.

Zero X EWGD (.1 ms) Hybrid
Accuracy(%) 80.2 46.4 78.8

RMS (ms) 0.29 0.34 0.30
# per segment 310 102 156

female

male

Figure 2: Examples of the DEGG waveform (pink-dash) and the
inverse-filtered derivative glottal waveform (blue-solid) for a fe-
male (top) and male (bottom). Reference GCIs and GOIs derived
from peak picking DEGG are shown in (x) and (o) respectively

errors from matched samples.

3. Experiments
3.1. Evaluation Test Set

The test set used here is the Keele’s database [10], popularly used
for pitch estimation evaluation. It consists of 20-kHz sampling-
rate recordings of a roughly 30-second phonetically-balanced pas-
sage read by five females and five males. The Electroglottograph
(EGG) signal is also simultaneously recorded for each speaker.
The pitch masks at a frame resolution have been derived from the
EGG and our evaluation periods ignore one frame margin on both
sides of the voiced periods. Our reference GCIs are generated by
finding peaks of the derivative EGG (DEGG) [11] which are very
clear. The ground truth for GOIs are, on the other hand, much
harder to identify. Our references are again based on minimal
peaks of the DEGG which correspond to the inflexion points in
the EGG (see Figure 2. Note that time delay is not compensated).
Although easier to identify, such minimal peaks do not correspond
to the “opening” instants for our modeling purposes, although it
may be useful in other applications. The results presented in table
3 will therefore be only an approximation after forced-alignment
(also a DP) of these different types of opening definition, assuming
a constant offset between the two as evident in Figure 2.

A forced-alignment is also performed on the GCI results to
compensate for a fixed delay difference between speech and EGG
ground-truth. The cost of miss-detection and false alarm is taken to
be the same during the alignment. False alarm rate (FAR) and miss
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ction rate (MDR) are defined as the outputs and the references,
ectively, left unmatched. Accuracy and RMS are defined as
ribed earlier in section 2.3.

Results and Discussion

le 2 shows the results for EWGD method (best result for each
der) and our algorithm. The DP waveform fitting (DPWF)
ieves comparable FAR and MDR to the EWGD. The accuracy,
ever, is clearly more superior. Figure 3 illustrates a typical

mple of successful performance. Note accurate identification
when CP is non-existent. The algorithm is resilient against

iations from the ideal model. On closer inspection, it is clear
most errors occur during transitioning periods where the LPC

dual does not follow Rosenberg’s model and when many spu-
s peaks occur. Results for GOI identification are shown in
e 3. FAR and MDR are comparable to those of GCI as should
xpected. The accuracy, however, is much lower for the same
gent accuracy criterion used for GCIs, illustrating the diffi-

y. From inspections, most are nevertheless reliable enough for
eform coding purposes, although parameter smoothing might
equired for a good sound.
It is possible that other models are used to fit the waveform.

ystematic error of identifying an opening as another closing is
e common and post processing to correct such obvious errors
uld improve the performance rather easily. Other cost terms
those used in [5] could also help further although hard to con-

. The algorithm also has a weak point of being polarity depen-
t. However, this should be easy to spot using simple threshold-

Table 2: GCI identification results comparison.

Performance EWGD DPWF

FAR (%)
Females 2.6 2.3
Males 6.0 6.1

MDR (%)
Females 4.6 4.3
Males 2.6 2.0

Accuracy (%)
Females 52.8 80.9
Males 64.1 69.3

RMS (ms)
Females 2.0 0.5
Males 1.0 0.9

Table 3: GOI identification results.

Performance DPWF

FAR (%)
Females 2.6
Males 6.8

MDR (%)
Females 4.2
Males 3.5

Accuracy (%)
Females 27.0
Males 13.3

RMS (ms)
Females 1.3
Males 2.0

Voice Coding and Modification

direct by-products of the proposed GCI/GOI detection are the
meters of the waveform during the open-phase. Together with



Figure 3: A female voice with GCIs (x) GOIs (o) identified

the GCIs and GOIs information, an approximated glottal excitation
waveform can be generated and passed through the vocal tract fil-
ter for a speech output that will sound very much like the original.
This can then be used to encode the voice parametrically as a time
varying set of vocal tract filter, source’s amplitude, pitch and open-
quotient coefficients. Figure 4 shows the original male utterance of
“Where were you while you were away” and the reconstruction us-
ing parameters and temporal marks estimated from the algorithm.
Its pitch can be modified easily by changing the closure marks. Its
duration can be changed by appropriate addition of extra cycles
or omission of some cycles. Rosenberg’s model also allows the
change in voice quality, from pressed to normal and breathy, by
changing the open-quotient, and perhaps, even adding some noise
pitch-synchronously. For results with no artifacts, all parameters
should be smoothed before using. All audio demonstrations can
be found at http://ccrma.stanford.edu/˜pj97/icslp06 demo.html.

In addition to the simple polynomial waveform, the residual
resulting from the subtraction of the parametric estimate can also
be coded using codebook or other forms of compression. How
to encode them for optimal perceptual effect during original play-
back and during modification is the subject of an ongoing research.
It is quite clear that pitch-synchronous method will again be the
most likely choice especially in breathy voice modeling. It should
also be mentioned that these residual signals are likely to be more
random while ag and bg are slowly varying, and hence, easy to
compress.

4. Conclusions

A dynamic programming algorithm which simultaneously iden-
tifies the GCIs, GOIs and the glottal waveform parameter has
been presented. The evaluation results show identification rates
of the GCIs to be comparable to a classical method using group
delay. The accuracy of the identified GCIs, however, show im-
provements. Experiments also show reasonable estimates of the
GOIs. The algorithm enables parametric coding of the voice exci-
tation source which is amenable to various types of expressiveness
modification.
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re 4: Original utterance (top) and its parametric reconstruc-
(bottom)
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