
A Speaker Adaptation Algorithm Using Princ

Wang Jingying. Wang

Speech Recognition Lab. Department o
Tsinghua University, Chi
wangjingying02@tsingh

Abstract 
A new speaker adaptation method of speech recognition is 

proposed in this paper utilizing principal curves algorithm. The 
key feature of this method is the construction of a 
transformation function based on the correlation information 
between observations of different acoustic states. This is an 
important a priori information crucial to improving system’s 
recognition performance.  Herein the relationships between the 
statistics information required choosing the best reconstruction 
of an audio speech pattern and the codebook state parameters of 
the new algorithm are described, and then the method is applied 
to a large database of continuous speech. Experiment results on 
large vocabulary continuous speech recognition database 
showed that this new method is superior to MLLR adaptation 
approach in noisy cases, demonstrating that the principal curves 
speaker adaptation algorithm successfully exploits the 
correlation information and improve robustness. 
Index Terms: principal curves, correlation information, speaker 
adaptation, maximum likelihood linear regression. 

1.  Introduction 
Robustness, roughly defined as the scope of different 

inputs for which more accurate results are obtainable, is an 
important factor to consider when characterizing a speech 
recognition system. Speaker adaptation techniques aim to 
improve a speech recognition system’s robustness. In recent 
years, a lot of speaker adaptation methods have been proposed, 
including the Maximum Likelihood Linear Regression (MLLR) 
method[1], the Maximum A Posterior (MAP) method[2], 
EigenVoice(EV)[3] method, etc. The MLLR method is a 
transformation-based approach, which aims at using mutual 
correlation information of observations by transformation 
matrices for the model parameters that maximize the likelihood 
of the adaptation data. The MAP is a Bayesian adaptation 
approach, which adjusts codebook parameters using maximum a 
posteriori estimates. And the EV approach constrains the 
adapted model to be a linear combination of a small number of 
basis vectors obtained from a set of reference speakers.

In MLLR, only state cluster takes distance between states 
into consideration. Eigenvoice describes the variation between 
reference speakers. By contrast, the principal curves speaker 
adaptation (PCSA) method proposed here utilizes a nonlinear 
curve to describe relations between different acoustics states.  
Since observations made about a specific feature of a speech 
segment may be faulty, particularly if the environment is noisy, 
use of a curve joining all states can make the statistic 
information more accurate and thus improve system 
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rmance. Our goal is to improve robustness resorting to 
er adaptation method in noisy cases. 

The remainder of this work is organized as follows:  The 
 ideas of the principal curves algorithm and a description 
e Principal curves speaker adaptation algorithm are 
nted in Section II.  Experiment results found when our 
od was applied to a large database of speech segments 
ding comparison to other speaker adaptation methods) are 
nted in section III.  Section IV summarizes our work.   

.  Principal curves speaker adaptation 
algorithm 

Principal curves algorithm 

Principal curves have been widely used in many fields, 
as in feature extraction and ice flow identification in 

ite imagery [4-8]. In order to describe the distribution of 
vations of pairs of variables, one variable is usually treated 
 response variable, while the other is the so-called 
natory variable. In contrast to this, by adding a latent 
ble, the iterative principal curves algorithm proposed by 
e and Werner [4] allows the two variables to be treated 
etrically.   

In the following description of the principal curves 
ion algorithm, vectors are denoted by bold lower case 
cters, e.g. v , while bold upper case characters denote 
ces, e.g. A .
The curve f  is called a principal curve if 

)())(|( fxx fE                                              (1) 
for a.e .
Here denotes latent variable, x is the real sample, 
) denotes the value of for which ( )f is closest to x .
Principal curve is such a curve that every point on it is the 
ge of all samples that are projected on .

Principal curves speaker adaptation 
The following algorithm applies the principal curves 
ework to speaker adaptation (note that formula below are 
 in either component or matrix form).  We break the 
ithm into five segments (note also that only correlations of 
me feature dimension for all states are considered).   

For ( 1,2, , )thd d L dimension component, perform 
1) through step (4): 
Let , , ,( , )i d i d i ds cx  such that 
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 where dis ,  is the feature statistics, dic , is the codebook 

mean, 1 and 2  denotes estimation error, 1 2( , )f ff denotes 
principal curves. 

(1)  The iterative principal curves algorithm is initialized 
by the covariance matrix:   

(1.a)  First set the M M covariance matrix d between
different states, as  

MjMidijd ,,1;,,1, )(                                         (3) 

where

, , , , , , ,
1

1 [( )( )]
N

ij d k i d i d k j d j d
k

p p
N

                   (4) 

, , ,
1
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i d k i d
k

p
N

                                                           (5) 

Here d is the index for components (feature dimensions) 
( 1,2, , )d L , i is the index for states (codebook and 

observations) ),,2,1( Mi , k  is the index of speakers 

( 1, 2, , )k N , dikp ,,  denotes components of the speaker 

super vector, speaker super vector is composed by 
concatenating the mean vectors of all his\her HMM Gaussian 
distributions, and di, are the means of all the speaker super 

vectors. 
(1.b)Carry out eigen-decomposition on d :

T
d d dA A                                                                   (6) 

(1.c) Calculate (0)
d  utilizing 

(0)
d d ds c A                                                                (7) 

 where

1, 2, ,( , , , )T
d d d M ds s ss , 1 2( , , , )T

Mc c cc ,

,
1

1 L

i i d
d

c c
L

( 1, 2, , )i M ,

(0) (0) (0) (0)
1, 2, ,( , , , )T

d d d M d

(2)  Repetition over iteration counter j (the superscript 
denotes iteration counter): 

(2.a) Conditional expectation step:  for each ( 1)
,
j

i d , obtain 
( ) ( 1) ( 1)

, ,( ) ( | )j j j
i d i dEf x                                               (8) 

here we estimate ( ) ( 1)
,( )j j

i df  by average all ,m dx  for 

which ( 1)
,
j

m d  is closest to ( 1)
,
j

i d ,let Q  denotes the set of these 

,m dx  . namely: 
( ) ( 1)

, ,( )j j
i d im m d

m Q
wf x                                              (9) 

where ,i mw denotes weight.  
Then we get a piecewise line called as principal curve by 

joining up all ( ) ( 1)
,( )j j

i df .
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(2.b) Projection Step:  find every observation’s projection 
) )j

d on the principal curve constructed at step (2.a) through 
( ) ( )
, ,arg min || ( ) ||j j

i d i dx f                                     (10)  

Sort ( ) ( ) ( )
, ,,  ( ))j j j

i d i df in increasing order of 

( 1, 2, , )i M . Let: 

( ) ( ) ( ) ( ) ( )
, , 1,

1
( ) ( )

i
j j j j j

i d a d a d
a

f f                                (11) 

here 2, ,i M  and ( )
1, 0j

d ;

(3)  If the change in ( ) ( )
, ,

1
( )

M
j j

i d i d
i

x f  is below some 

ous given threshold, go to step (4); else go to step (2) 
(4)  Replace codebook state mean with iterated 

( )
1 ,( )j

i df , ( 1, 2, , )i M .

(5)  If d L , stop; else 1d d , go to step (1). 
It can be demonstrated that the principal curves is a nearest 
 describing joint behavior of feature statistics and 

book mean of all states [4].
Recall that the goal is to exploit correlation between 
vations of different acoustics states to improve a system’s 
nition performance.  A typical variable reflecting such 
correlation information is covariance matrix between states.  
efore the iterative principal curves algorithm is initialized 
ovariance matrix. Furthermore, the principal curves 
ithm uses a curve joining all the states’ feature statistic 
mation and codebook means (as alluded to in the 
duction).  The projections of the feature statistics onto this 
 are taken as the final updated codebook parameters. Since 
tate label may be error in noisy environment, the weight 
ge computation in equation (9) may introduce the feature 
tics of the right state into the new coordinate, so the 
book mean can be effectively modified. 
Comparing to MLLR, PCSA is a nonlinear transformation 
od. PCSA utilized latent variable joining up all state, so 
orrelation information between states mainly are showed 
e sort of latent variable. While in MLLR the correlation 

mation only are showed in the clustering step.  

3.  Experiment results and discussions 

Acoustic model 
The acoustic part of our model is based on a modified 
en Markov Model (HMM) called the Duration Distribution 
d Hidden Markov Model (DDBHMM).  The DDBHMM [9] 
 inhomogeneous HMM which relies on the fact that the 
duration distribution is relatively stationary.  Whereas the 
ard HMM uses the state transition probability, the 
HMM utilizes the duration distribution probability.  Given 
rames of state observations ( 1,2, , )to t T which
ined make up a feature vector of speech 

1 2( , , , )To o o and vector word strings  



1 2( , , , )KW w w w , the optimum word string *W  is defined 
as : 

1

2

*

, , 1 1

   arg max ( | )

arg max{ max ( ) ( )}
i

M
t

W
SM

i i i tS SW i t S

W P O W

P b o
                   (12) 

      where ( | )P O W  is the probability of the observation 

sequence O given the word string W , i is the number of 

frames of the observation vectors belonging to thi state (or the 
duration of state i : 1i i iS S , ( 1,2, , )i M , iS is the state 

segment point and M  is the number of states. ( )iP  denotes 

the duration distribution function of the thi  state, while ( )i tb o
is the probability density of observation vector to  in state i .

3.2. Experiment conditions 
All experiments were run using 863 “large vocabulary 

continuous speech recognition” databases, which are sponsored 
by the National 863 High-Tech Project of China for the 
assessment of large vocabulary continuous speech recognition 
systems. White noises from the Noise92 database were selected 
as speech contaminants. The noises were artificially added at a 
variety of signal-to-noise ratios ranging from 15dB to 25dB.  
Here SNR=10*log (speech energy/noise energy). Data was 
divided into two parts. The first part, consisting of the first 76 
files, served to train the system and the second part, consisting 
of 7 files, was used to evaluate/test the recognition rate.  The 83 
files came from 83 different male speakers, and every file was 
comprised of more than 600 sentences.  Each file was about 
0.66 of an hour long containing about 0.457 of an hour of 
speech, so every sentence was approximately 2.74 seconds long. 

Chinese speech is modeled as diphoneme.  That is, each 
word is composed of an initial and a final.  An initial includes 2 
states, whereas a final includes 4 states. Thus, 100 initials and 
164 finals combine to produce 857141642100
states (including 1 state representing silence).  Each state 
observation is modeled as a single Gaussian distribution. The 
system employs feature vectors consisting of 14 MFCCs with 
normalized energies and their first- and second-order derivatives 
(a total of 45 parameters).  The DDBHMM is built and the 
codebooks are trained using these feature vectors. 

3.3. Experiment results and discussions 
Table 1 gives the acoustics recognition error rate of 100-

best candidates PCSA compared with MLLR under clean and 
white noise environment. In our experiments, 10 to 120 
sentences are used for each speaker for adaptation and the 
remaining sentences for recognition. The same computations are 
conducted to the other 7 files and the average error rate of the 
recognized 7 speakers is given in table 1. The file is first 
recognized as rough state segmentation, and then the recognized 
results are used as state label to instruct the following 
recognition.

MLLR approach here is grouped into 14 clusters. Since 
MAP needs exact state labels, which can’t be obtained when 
noise exists, MAP is inferior to baseline, so we didn’t mention 
its result. The experiment results are shown in table 1. 
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From the table it can be seen that against white noise 
ground PCSA is superior to MLLR. From clean, SNR 25dB 
dB of adapting 120 sentences, relative error rate decreases 
ctively by 15.45%, 45.34%, 42.23%, and 33.82% of PCSA 
ared to baseline, while 9.76%, 32.60%, 33.50% and 
% of MLLR. Furthermore, the more adaptation data there 
the lower recognition error rate there is. Adapting 60 
nces compared to adapting 120 sentences under 15dB 
 noise, the relative error rate is cut down from 19.20% 
5%, 19.37%) to 33.82% (12.82%, 19.37%). Here 
=10*log (speech energy/noise energy) and recognition 
 rate= 100% *(recognized error syllables)/ (recognized 
syllables). 
Figure 1 analyze the effect of ,i mw in step (2.a), here we 

der two kind of values of ,i mw : the first is average weight 
l points in neighborhood, the second is LWRLS (locally 
hted running-lines smoother) [4]. We can know from figure 
t the LWRLS is superior to average weight. 
In PCSA, no assumption of any probability distribution of 
made. Since in fact noisy speech may not take Gaussian 
bution, the proposed method exhibits some satisfactory 
ts. Furthermore, principal curves construct a nonlinear 
 describing the relation of observations of different states 
codebook parameters. Since the inherent correlation 

mation of acoustic state is exploited, PCSA not only adapt 
er information but also reduce noise’s effect. The system’s 
rmance is finally improved.  

Figure 1. Weight effect on error rate 

4. Conclusion 
Based on principal curves, the paper has presented a new 
er adaptation method that takes state correlation into 
nt. This approach gets an initial estimate of latent variable 

ing covariance matrix, and it does not assume any 
bility of latent variable. Furthermore, correlation between 
 is modeled through a principal curve. Experiments on 863 
 vocabulary continuous speech recognition databases 
rm that this algorithm is beneficial, compared to MLLR 
ially in noisy cases. 

References 
 J Leggetter, P C Woodland. “Maximum likelihood linear 
ssion for speaker adaptation of continuous density hidden 
ov models”,  Computer Speech and Language, Vol. 9, no. 
. 171-185,1999 



[2] Jean-Luc Gauvain, Chin-Hui Lee. “Maximum a posterior 
estimation for multivariate Gaussian mixture observations of 
markov chains”, IEEE Trans. On Speech and Audio Processing, 
Vol. 2, No.2, pp. 291-298, April 1994 
[3] Roland Kuhn, Jean-Claude Junqua, Patrick Nguyen, Nancy 
Niedzielski. “Rapid speaker adaptation in eigenvoice space”, 
IEEE Transactions on speech and audio processing. Vol.8, No.6 
2000
[4] Trevor Hastie, Werner Stuetzle,” Principal curves”, Journal 
of the American Statistical Association, Vol. 84, No. 406, pp. 
502-516,  Jun., 1989. 
[5] K. Reinhard and M. Niranjan, ”Parametric subspace 
modeling of speech transitions”, Speech Communication, Vol. 
27, no. 1, pp. 19-42, 1997.  

[6]  
speec
Instit
[7] Y
Impr
ident
in Pr
[8] 
ident
morp
the A
Mar.
[9] X
HMM
32, n

INTERSPEECH 2006 - ICSLP
Reinhard K. , and Niranjan M,” Subspace models for 
h transitions using principal curves,” Proceedings of 
ute of Acoustics, Vol.  20, no. 6, pp. 53-60, 1998 
ong Guan, Hongwei Qi, Wenju Liu, and Jue Wang,” 

oving performance of text-incorrelation speaker 
ification by utilizing contextual principal curves filtering,” 
oc. Interspeech 2004:  pp. 1781-1784. 
Jeffrey D. Banfield, Adrian E. Raftery. ”Ice floe 
ification in satellite images using mathematical 
hology and clustering about principal curves”, Journal of 
merican Statistical Association, Vol. 87, no. 417, pp. 7-16, 

, 1992 
. Xiao, Wang Zuoying. ”Duration Distribution based 
 for speech recognition”, Acta of Electronica Sinica, Vol. 

o.1, pp.46-49, 2004(in Chinese) 
Table 1. Recognition Error rate of PCSA comparable with  MLLR 

Clean White 25dB White20dB White15dB Number of 
sentences for 

adaptation PCSA MLLR PCSA MLLR PCSA MLLR PCSA MLLR 

0(Baseline) 1.23% 1.23% 4.08% 4.08% 8.24% 8.24% 19.37% 19.37% 
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40 1.35% 1.17% 3.11% 3.17% 6.64% 6.94% 17.09% 17.76% 
60 1.23% 1.13% 2.69% 2.92% 5.70% 6.20% 15.65% 15.47% 
80 1.23% 1.12% 2.44% 2.79% 5.16% 5.74% 14.30% 14.89% 

100 1.13% 1.11% 2.35% 2.80% 5.05% 5.61% 13.48% 14.13% 
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