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Abstract
We describe an algorithm for monitoring subjective speech quality
without access to the original signal that has very low computa-
tional and memory requirements. The features used in the pro-
posed algorithm can be computed from commonly used speech-
coding parameters. Reconstruction and perceptual transformation
of the signal are not performed. The algorithm generates quality
assessment ratings without explicit distortion modeling. The sim-
ulation results indicate that the proposed non-intrusive objective
quality measure performs better than the ITU-T P.563 standard de-
spite its very low computational complexity.
Index Terms: non-intrusive quality assessment, quality of service.

1. Introduction
Speech quality assessment is an important problem in communi-
cation systems. The quality of a speech signal is a subjective mea-
sure. It can be expressed in terms of how natural the signal sounds
or how much effort is required to understand the message. In a for-
mal subjective test, speech is played to a group of listeners, who
are then asked to rate the quality of the signal. A commonly used
subjective quality scale is the Mean Opinion Score (MOS) [1], [2].

Objective measures use mathematical expressions to predict
speech quality. Their low cost is attractive for continuous moni-
toring of the quality of services (QoS) of a network. Two different
test situations can be distinguished: 1) intrusive (both the original
and distorted signals are available), and 2) non-intrusive (only the
distorted signal is available). The methods are illustrated in Fig. 1.
The original signal is typically not available in QoS monitoring,
which means that non-intrusive quality assessment must be used.

Algorithms for non-intrusive speech quality assessment have
seen rapid development over the last fifteen years. They have been
based on various principles. Au and Lamb [3] partition the spec-
trogram and compute its variance and dynamic range on a block-
by-block basis. The average variance and dynamic range is used to
predict speech quality. Gray et al. [4] attempt to predict the likeli-
hood that an audio signal is generated by the human vocal produc-
tion system. The parameterized data are used to generate physio-
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Figure 1: Intrusive and non-intrusive quality assessment. Non-
intrusive algorithms do not have access to the reference signal.
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cally based rules for error assessment. Liang and Kubichek [5]
pare the speech to be assessed to an artificial reference signal
is appropriately selected from a optimally clustered codebook.
ent algorithms based on Gaussian-mixture probability models
M) of features derived from perceptually motivated spectral-
lope representations can be found in [6] and [7]. A novel,
eptually motivated speech quality assessment algorithm based
emporal envelope representation of speech is presented in [8].

The results of some of these studies have been incorporated
e International Telecommunication Union (ITU) standard for
intrusive quality assessment, ITU-T P.563 [9]. This standard
ides state-of-the-art non-intrusive speech quality assessment.
tal of 51 speech features are extracted from the signal. Key
res are used to determine a dominant distortion class, and in
distortion class a linear combination of features is used to

ict the intermediate speech quality. The final speech quality is
ated from the intermediate quality and 11 additional features.

The above listed non-intrusive measures are designed to pre-
the effects of a large range of distortions, and they typically
high computational complexity. Non-intrusive quality pre-

on is possible at much lower complexity if it is assumed that
ype of distortion is known [10].

We conclude that existing algorithms either have a high com-
tional complexity and a broad range of application or a low
plexity and a narrow range of application. This has motivated

develop a low complexity quality assessment (LCQA) algo-
. The algorithm predicts speech quality from generic features

monly used in speech coding, without any assumption on the
of distortion. In extensive testing, the proposed algorithm was
d to be significantly better than ITU-T P.563 (cf. section 3).

2. Low-complexity quality assessment

objective of the proposed LCQA algorithm is to provide a es-
te of the MOS for each utterance, based on a set of features
is readily available from speech coders used in a communica-
network. The algorithm has low computational complexity, to
e it useful for practical applications.

Speech Features

matic quality analysis systems are based on the extraction of
ture vector. The set of per-block features used in LCQA aims
pture low-level aspects of the speech-signal structure that are
y relevant to human quality judgment. In this section we dis-
the per-block features that we have selected.

The spectral flatness measure is related to the intensity of the
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resonant structure in the power spectrum:

Φ1(n) =
exp 1

2π

π

−π
log (Pn(ω)) dω

1
2π

π

−π
Pn(ω)dω

, (1)

where P (ω) is the autoregressive (AR) model spectral envelope,
which is available in virtually all speech coders.

As a second per-block feature we use spectral dynamics, de-
fined as

Φ2(n) =
1

2π

π

−π

(log Pn(ω) − log Pn−1(ω))2 dω, (2)

where n is a block index that is consistent with that of speech
coders (the typical separation of blocks is 20 ms). Spectral dy-
namics have been studied and successfully used in speech coding
[11], and speech enhancement [12].

The spectral centroid [13] determines the frequency area
around which most of the signal energy concentrates

Φ3(n) =

π

−π
ω log (Pn(ω)) dω

π

−π
log (Pn(ω)) dω

, (3)

and it is considered to be a measure of perceptual “brightness”.
The final three per-block features are the variance of the exci-

tation of the AR model Ee
n, the speech signal variance Es

n, and the
pitch period Tn. They are denoted as Φ4(n), Φ5(n), and Φ6(n).

The per-block features and their first time derivatives (we
do not use the derivative of the spectral dynamics) form an 11-
dimensional per-block feature vector signal Φ(n) with a sampling
rate that depends on the speech coder.

We hypothesize that the speech quality of an utterance can be
estimated from statistical properties of the per-block feature vec-
tor signal Φ(n) over a subset of relevant (cf. section 2.2) signal
blocks of the utterance. We characterize the probability distribu-
tion of Φ(n) with the mean, variance, kurtosis, and skewness of its
components. Thus, the moments are calculated independently for
each feature. These per-utterance statistical features are grouped
into a single global feature set Ψ.

2.2. Dimensionality Reduction

It is common in the quality assessment literature to remove signal
blocks based on a voice activity detector or an energy threshold
[14]. We propose a generalization of this concept by including
block-activity thresholds in all feature dimensions. The scheme,
presented in Table 1 excludes speech active signal blocks if they
do not contribute to the accuracy of speech quality prediction.

From Table 1 we see that a vector of thresholds to select the
active blocks is Θ = {ΘL

i , ΘU
i }11

i=1. Let Ω̃ denote the relevant
blocks. We search for the threshold vector Θ that minimizes the
criterion ε:

Θ = arg min
Θ∗

ε(Ω̃(Θ∗)), (4)

where ε is the (experimental) root mean square error in the MOS
over the utterances in the training database (cf. section 3). Thus,
the threshold vector is selected to maximize the performance of
the LCQA algorithm over the training database.

For our implementation (cf. section 2.4), the optimization of ε
with the frame selection algorithm, described in Table 1, led to the
following acceptance criterion the n-th frame:

Φ5(n) > ΘL
5 & Φ1(n) < ΘU

1 & Φ2(n) < ΘU
2 , (5)
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Table 1: Selection of relevant signal blocks.

tialize: Ω̃ = {∅}
n ∈ Ω
if Φ1(n) ∈ [ΘL

1 , ΘU
1 ] & . . . & Φ11(n) ∈ [ΘL

11, Θ
U
11]

Accept the n-th frame: Ω̃ = Ω̃ + {n}

threshold values ΘL
5 = 3.10, ΘU

1 = 0.67, and ΘU
2 = 4.21.

the speech variance Φ5, spectral flatness Φ1, and spectral
mics Φ2), have significant impact on the block selection. The
and second inequalities in (5) accept only frames with high-
gy and clear formant structure. This suggests that the LCQA
rithm extracts information about the speech quality predom-
ly from voiced speech regions. The third inequality selects
stationary speech regions. A possible explanation is that dis-

on is more easily perceived in steady-state regions of speech.
Once the optimal subset of blocks Ω̃ is found, we search for
optimal subset of features Ψ̃. (We do not optimize the sets

and Ψ̃ jointly because of the associated high computational
plexity.) This optimization step is defined as follows: given
original set of features Ψ of cardinality |Ψ|, select a subset of
res Ψ̃ ⊂ Ψ of cardinality |Ψ̃| < |Ψ| that is optimized for the

ormance of the LCQA algorithm:

Ψ̃ = arg min
Ψ̃∗⊂Ψ

ε(Ψ̃∗). (6)

A full search is the only dimensionality reduction procedure
guarantees that a global optimum is found. Non-optimal meth-
with lower complexity such as the well-known Sequential For-

Selection and Sequential Backward Selection and the more
nced (L,R) algorithm [15] are commonly used. The Floating
ch methods [16] are extensions of the (L,R) search methods.
ur simulations we used the Sequential Floating Backward Se-
on procedure, which consists of applying after each backward
a number of forward steps as long as the resulting subset are
r than the previously evaluated ones.

We reduced the dimensionality of the global feature set from
o 14, i.e., |Ψ̃| = 14. The final feature set is

{s(Φ1), σ(Φ2), μ(Φ4), μ(Φ5), σ(Φ5), s(Φ5), μ(Φ6),

s(Φ7), μ(Φ8), μ(Φ9), σ(Φ9), s(Φ9), μ(Φ10), μ(Φ11)}, (7)

re μ(·) indicates the mean, σ(·) the variance, and s(·) the
ness of the per-block features. We observe that all per-block
res are represented in the set Ψ̃, and that the speech signal

ance Φ5, and the time-derivative of the variance of the excita-
signal Φ9 are most frequent. Another interesting observation
at the kurtosis is found to be less important.

Mapping the Global Feature Set to Speech Quality

Q denote the MOS of an utterance as obtained from the MOS
led training database. We construct an objective estimator Q̂
e subjective quality as a function of the global feature set, i.e.,
Q̂(Ψ̃), and search for the mapping that minimizes the mean

re error

Q̂(Ψ̃) = arg min
Q∗(Ψ̃)

E{(Q − Q∗(Ψ̃))2}, (8)

re E{} is the expectation operator. Equation (8) is minimized
he conditional expectation Q̂(Ψ̃) = E{Q|Ψ̃} and the problem



reduces to the estimation of the conditional probability density. To
this purpose, we model the joint density of the feature variables
with the subjective MOS scores as a GMM

f(ϕ) =
M

m=1

ω(m)N (ϕ|μ(m), Σ(m)), (9)

where ϕ = [Q, Ψ̃], ω(m) are the mixture weights, and
N (ϕ|μ(m), Σ(m)) are multivariate Gaussian densities with mean
vectors μ(m) and covariance matrices Σ(m). The parameters can
be trained using the well-known expectation maximization (EM)
algorithm. Our experiments showed that it is sufficient to use 12
full-covariance matrices, i.e., M = 12.

2.4. Implementation Details

In this section we describe how the features are calculated in our
experimental system, which has a block rate of 50 Hz. To obtain
low complexity, we simplify the computations for the spectral flat-
ness, spectral dynamics, and spectral centroid so that the speech
coder bit-stream can be used, avoiding signal reconstruction.

We calculate the spectral flatness as the ratio of the tenth-order
prediction error and the signal variance

Φ1(n) =
Ee

n

Es
n

. (10)

We calculate the signal variance without reconstructing the wave-
form by means of the reverse Levinson-Durbin recursion for the
AR model parameters (step-down algorithm).

The AR-spectrum dynamics are implemented as a weighted
Euclidean distance on the line spectral frequencies (LSF):

Φ2(n) = (fn − fn−1)
T Wn(fn − fn−1), (11)

where f is the LSF vector and Wn is the diagonal matrix

W (ii)
n = (f (i)

n − f (i−1)
n )−1 + (f (i+1)

n − f (i)
n )−1. (12)

These weights are also used to obtain a redefined spectral centroid:

Φ3(n) =
10
i=1 iW

(ii)
n

10
i=1 W

(ii)
n

. (13)

To reduce storage, we calculate the selected global descriptor
μΦ recursively:

μΦ(n) =
n − 1

n
μΦ(n − 1) +

1

n
Φ(n), (14)

where n is the index over the relevant block set Ω̃. In a similar fash-
ion, we propagate Φ2, Φ3, and Φ4 to obtain the central moments.
Upon completion of the utterance, these quantities are used to ob-
tain the remaining global descriptors variance, skew, and kurtosis.
Table 2 summarizes the LCQA algorithm.

3. Performance Evaluation
We compare the performance of the proposed LCQA algorithm
with the ITU-T P.563 standard in terms of both per-utterance and
per-condition performance metrics. The per-utterance quality-
estimation performance is evaluated using the root mean square
error

ε =
N
i=1(Qi − Q̂i)2

N
, (15)

and
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Table 2: Overview of LCQA Algorithm.

1. For the n-th speech block calculate {Ee
n, Tn, fn} from

the waveform or extract from the bit-stream.

2. Calculate per-block feature vector Φ(n), based on
{Ee

n, Tn, fn} and {Ee
n−1, Tn−1, fn−1}.

3. For the selected subset of blocks Ω̃ recursively calculate
the central moments. Block selection is controlled by
the threshold vector Θ.

4. At the end of the utterance calculate global feature set
Ψ̃ containing mean, variance, skew, and kurtosis of the
local features over the relevant blocks.

5. Predict the speech quality as a function of the global
feature set Q̂ = Q̂(Ψ̃), through GMM mapping.

the correlation coefficient

R =

N
i=1(Q̂i − μQ̂)(Qi − μQ)

N
i=1(Q̂i − μQ̂)2 N

i=1(Qi − μQ)2
, (16)

re Qi and Q̂i are the quality and the estimated quality of the
utterance, μQ and μQ̂ are the respective mean values and N is
umber of utterances.

In the per-condition quality estimate, i is the condition, Qi and
re the quality and the estimated quality of the i-th condition,

and μQ̂ are the mean values over all conditions, and N is the
ber of conditions.
To improve generalization performance, we use training with
e procedure [17]. We created virtual (“noisy”) training pat-
s, by adding zero mean white Gaussian noise, at 20 dB SNR
asured including silence regions), to the training patterns. In
manner we created four virtual sets for each global feature
, and the training was based on the union of the “real” and

sy” data.

Speech Databases

the training procedure we used 11 MOS labeled databases
ided by Ericsson AB and seven such databases from ITU-T
pp 23 database [18]. We refer to the combined set as the
al database. The global database contains utterances in En-
, French, Japanese, Italian and Swedish, with a large vari-

of distortions, such as various coding, tandeming, and packet
conditions, background noise, effects of noise suppression,

ching effects, and different SNR levels. The global database
isted of 7646 speech files with an average length of 8s.

Per-Utterance Performance over Global Database

assessed the accuracy of the proposed LCQA algorithm over
global database. We used 10-fold cross validation with 20%
e speech material, to provide robustness in the performance

uation. Table 5 shows the the averaged results of the cross-
ation tests, and Table 4 shows the RMSE outliers in %. The
A algorithm significantly outperforms ITU-T P.563.

Table 3: Averaged performance in correlation and RMSE.
R ε

LCQA 0.89 0.39
ITU-T P.563 0.75 0.61



Table 4: Outliers in RMSE, averaged over cross-validation tests.
Outliers (in %)

ε > 0.6 ε > 0.8 ε > 1.0
LCQA 6.1 3.9 2.6
ITU-T P.563 22.5 14.6 10.3

3.3. Per-Condition Performance over Unknown Databases

In this experiment we split the available databases into two parts,
test set and training set. The test set was based on seven databases
from ITU-T P.Supp 23 (1328 files) and the training set was based
on 11 Ericsson databases (6318 files). The test set is not available
during the training, but used only for evaluation. The training for
the dimensionality reduction scheme and performance evaluation
experiments was based entirely on the training set.

Table 5 shows the per-condition performance results over the
seven databases from ITU-T P.Supp 23. The test results clearly
indicate that the proposed LCQA algorithm outperforms the stan-
dardized ITU-T P.563.

Table 5: Performance of the LCQA algorithm in terms of per-
condition correlation coefficient.

Database LCQA ITU-T P.563
ITU-T P.Supp 23 Exp 1 A 0.94 0.88
ITU-T P.Supp 23 Exp 1 D 0.94 0.81
ITU-T P.Supp 23 Exp 1 O 0.95 0.90
ITU-T P.Supp 23 Exp 3 A 0.93 0.87
ITU-T P.Supp 23 Exp 3 C 0.95 0.83
ITU-T P.Supp 23 Exp 3 D 0.94 0.92
ITU-T P.Supp 23 Exp 3 O 0.93 0.91

3.4. Computational Complexity and Memory Requirements

The LCQA algorithm has low computation and storage require-
ments. It requires a buffer of 12+12 scalar values, calculated from
the previous and current block. Table 6 shows the advantage in
computational complexity of LCQA over ITU-T P.563. The com-
parison is between the optimized ANSI-C implementation of ITU-
T P.563 and a MATLAB 7 implementation of LCQA, both exe-
cuted on a Pentium 4 machine at 2.8 GHz with 1 GB RAM. With
LCQA-P we denote the case where the input features {Ee

n, Tn, fn}
are available from the speech coder. It is seen that LCQA has sig-
nificantly lower computational complexity despite the usage of an
interpretative language.

Table 6: Mean execution time for utterances with 8 s mean length.
Execution time (in s)

ITU-T P.563 LCQA LCQA-P
Time 4.63 1.24 0.01

4. Conclusions
We demonstrated that a low-cost non-intrusive speech quality as-
sessment algorithm can be a valuable tool for monitoring the per-
formance of a communication system. By means of simulations
over a large database we demonstrated that the presented algorithm
predicts speech quality more accurately than the standardized ITU-
T P.563 and at much lower complexity. Since the algorithm does
not use an explicit distortion model, the algorithm facilitates ex-
tension to quality assessment of future communication systems.
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