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Abstract
We present two discriminative language modelling tech-

niques for Lempel-Ziv-Welch (LZW) based LID system.

The previous approach to LID using LZW algorithm was

to directly use the LZW pattern tables for language mod-

elling. But, since the patterns in a language pattern table

are shared by other language pattern tables, confusability

prevailed in the LID task. For overcoming this, we present

two pruning techniques (i) Language Specific (LS-LZW)-

in which patterns common to more than one pattern table are

removed. (ii) Length-Frequency product based (LF-LZW)-

in which patterns having their length-frequency product be-

low a threshold are removed. These approaches reduce

the classification score (Compression Ratio [LZW-CR] or

the weighted discriminant score [LZW-WDS]) for non na-

tive languages and increases the LID performance consid-

erably. Also the memory and computational requirements

of these techniques are much less compared to basic LZW

techniques.

Index Terms: Language modelling, PRLM, LS-LZW, LF-

LZW.

1. Introduction
Usually LID is done by tokenizing the input signal first

followed by building of language models for these tokens.

The common tokenization for spoken language identifica-

tion is that of phonemes of one or more languages [1]. In

text based LID, there is an implicit assumption of common

alphabets, whereas for spoken language, there is greater

freedom in choosing the tokens. Among the linguistically

derived tokens, phonemes can be extended to broad pho-

netic categories comprising of vowels, diphthongs or larger

units such as syllables. Other types of tokenization include

GMM tokenization [2] and fixed or variable length seg-

ment level tokenization [4]. Thus tokenization addresses

the issues of resolution in the acoustic space as well as

the duration of the tokens. The language models are often

stochastic models over the token set, viz., unigram, bigram

distributions [1][3], ergodic-HMM [4][5], duration models,

etc. Various architectures of LID have been proposed [3],

viz. (i) PRLM (phone recognition followed by language
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el), (ii) PPRLM (parallel PRLM), (iii) PPR (parallel

ne recognition). In this paper, we use the PRLM ar-

ecture because of its simplicity.

tochastic models proposed for LID are typically Markov

els of small orders (unigram, bigram, trigram etc.). The

uage discriminability is limited by the nature of the

el itself, with higher order models likely to do better,

higher order model estimates being poorer with limited

ing data.

he approach proposed in [6] attempts to solve the above

tation by using a deterministic model for a language.

deterministic model is automatically derived from the

ing data, which is assumed to be generalizable for the

een test data as well. This is made possible by develop-

a pattern table of token sequences. The loss-less coding

nique of LZW algorithm [8] is utilized in this respect.

e the pattern table is built, for a given test sequence,

mpression ratio (LZW-CR) or weighted discriminant

e (LZW-WDS) is computed for all the language pat-

tables and highest scoring pattern table is reported as

language identity of the test sequence.

he LZW technique allows the basic structural unit of the

uage to be of variable length. So the technique captures

the advantages of higher order models but with much

training data. But the LZW technique, being a deter-

istic approach, builds the pattern tables regardless of the

uency of occurrence of the patterns. A pattern P occur-

most in language L1 will also be present in the pattern

e of language L2 even if it occurs once in the training

of language L2. As a result of this, more than 50% of

patterns in each pattern table do not carry any language

cture information. These add confusability to the LID

, thereby inheriting the performance.

ere we propose two solutions for overcoming this limi-

n. We build LZW pattern tables as before but then make

e pattern tables more language specific by pruning it.

pruning techniques are discussed in Section 2. Section

scribes the experiments, results and a comparison with

am and basic LZW techniques. Finally we conclude in

tion 4.
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2. Discriminative Pattern Table Building
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Figure 1: Block Schematic showing the Training and Testing
Phase of LS-LZW-CR based LID

2.1. Training Stage

In training, we use LZW algorithm to build pattern tables

(Fig. 1) corresponding to each language. As compared with

the n-gram technique, the LZW method does not constrain

the individual patterns to be of the same size. Once the LZW

pattern tables are built, they are pruned by using one of fol-

lowing methods.

2.1.1. Language Specific (LS) Pruning

For each language pattern table, only those patterns which

are unique to that pattern table are retained. i.e. a pattern

P present in language L1 pattern table is retained only if

P doesn’t appear in any of the other pattern table. After

this the pattern table is modified in such a way that all the

patterns have their prefixes also as members of that pattern

table. i.e if a language L1 pattern table has a pattern say

P = abcd, then its prefixes abc, ab and a are also added

to the pattern table. This is required to ensure the basic

LZW pattern table property that all prefixes of a pattern in a

pattern table are also patterns in that table. This leads to an

increase in the pattern table size. Even with this addition,

about 25% reduction in pattern table size is obtained. Thus

the memory requirement as well as search complexity of

LS-LZW technique is about 25% lesser than the basic LZW

technique.

2.1.2. Length-Frequency (LF) product based Pruning

The frequency of occurrence of a pattern in a particular lan-

guage and its length are the two main measures indicating

the presence of that pattern structure in that language. So for

each pattern a measure, which is the product of its frequency

of occurrence in that language training data and its length, is

found out and those patterns whose length-frequency prod-

uct
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is lower than a preset threshold (for this paper all pattern

es have the same threshold 5) are retained in that pattern

e. The threshold determines the number of patterns re-

ed from the pattern table, more the threshold more will

he number of patterns removed from the table. When the

shold is set to a value 5, reduction in pattern table size is

e than 50%. This considerably reduces the computation

ired on the test data, yet at the same time preserves the

erns essential for performing LID. The prefix property

he LZW pattern tables is not violated by this pruning.

easiness in writing, in future we refer to the pruned pat-

tables as pattern tables.

Testing

ng the pattern tables from the discriminative training, we

in a classification score for any test sequence. Two such

es have been identified [6].

1. Compression Ratio (CR)

the test sequence, each newly found pattern is coded by

ndex in the pattern table. Since, the test sequence of pat-

s is represented only by a sequence of indices, the algo-

m achieves compression. The test sequence is separately

pressed by the pattern table of each language. For the

n test sequence, if a pattern table is representative of its

uage and if the test sequence contains patterns unique

hat language, the compression ratio will be high. Con-

ely, if the phoneme sequence does not correspond to the

uage of the pattern table, the phonemes get coded indi-

ally resulting in a low compression ratio. We define the

pression ratio as the ratio of the number of phonemes

e test sequence to the number of indices obtained after

compression.

2. Weighted Discriminant Score (WDS)

e each pattern is assigned a weighting factor. For a pat-

pi of length s, the weight factor Lj(pi) for language j
alculated as:

Lj(pi) =
Npi

Ns
(1)

re Npi denotes the number of times the pattern pi oc-

ed in the training data and Ns denotes the number of

erns of length s in the training data. The weight fac-

are normalized by dividing each weight by the sum of

ght factors of all the patterns in the pattern table. This

of weighting is done for all the language pattern tables.

or a test sequence o its discriminant score for a language

j(o) is calculated as follows. The test sequence o is

verted into a sequence of patterns by using pattern table

anguage j. Let qji, i = 1, ..., Tj denote these patterns.



Now the discriminant score of o for language j is defined as

the product of the weight factors of the individual patterns.

Lj(o) =
Tj∏

i=1

Lj(qi) (2)

The assumption here is that, the individual patterns are in-

dependent. If the patterns are not independent they would

not have occurred separately in the pattern table. i.e. if a

pattern qk and ql, k, l = 1..Tj are not independent of each

other, then qk and ql would not be separately present but the

concatenated pattern qkql would be present in the pattern

table. This assumption will hold good when the training

data for building the pattern tables contain most of the valid

patterns occurring in the language.

From the set of languages J , the language index for the

test sequence is j∗

j∗ = arg max
j∈J

(Lj(o)) (3)

Thus the training stage corresponds to building of all the

language pattern tables followed by pruning of the pattern

tables and the testing stage involves only the classification

score calculation.

3. Experiments and Results
The experiments for the LID task are performed on the 6

language OGI-TS data base, which contains manually la-

beled phonetic transcriptions. The 6 languages are : En-

glish, German, Hindi, Japanese, Mandarin and Spanish.

The OGI-TS database uses transcription based on the multi-

language motivated Worldbet [7]. The transcriptions of the

story-bt sentences of the OGI-TS database uses 923 sym-

bols in all, from the 6 languages. The phonetic detail is

made explicit by use of diacritics. The diacritics are merged

into the base labels leaving us with approximately 150 sym-

bols. By grouping together similar sounding phonemes,

this is further reduced to 50 language-independent phonetic

units. The resulting 50 units, which include several silence

and non-speech units, are shown in Table 1.

Now, we present the results of spoken language identi-

fication on the 6 languages of the OGI-TS database. Each

story-bt utterance is at least 45 sec long and is spoken by a

unique speaker. We divide the utterances of each language

into two parts, training speakers and testing speakers (mu-

tually exclusive). The story-bt being extempore and free,

makes the LID task text independent and speaker indepen-

dent. To simulate the real tokenization we introduce con-

trolled amount of token errors to manually assigned pho-

netic labels. Noisy tokenization is realized by first generat-

ing one random variable for each token. This random vari-

able takes on values 1 and 0 with probabilities p and 1 − p
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le 1: 50 size Phone Inventory including non-speech sym-
.

owel(14) i, 3r, I, u, E, >, @, &, o, a, 8, e, 2, ax

mivowels(4) w, l, r, j

iphthongs(8) ai, ei, ou, au, iu, Eax, oi, uax

asals(3) m, n, N

icative(9) f, s, sh, v, z, h, D, G, T

ffricate(3) dZ, ts, cC

ops(6) b, d, g, k, p, t

on speech(3) pause, line,breath,smacking noise,

other noises

ectively, where p is the induced artificial error rate. For

token, if the value of the corresponding random vari-

is 1, then that token is replaced by any one of the other

ns (all with equal probability). On the other hand, if

value of this random variable is 0, then that token is

unmodified. Thus, after this process we get a noisy to-

ization of the speech utterance with an error rate of p.

se is added to the training tokens as well as to the test

nemes. We have generated token sequences with 30%

r (corresponding to typical phoneme error rates of an

mated front end) to test the LID task.

raining data for each language consists of 20000

nemes. Test utterances have lengths varying from 20

00 phonemes. Using the mentioned techniques namely

ram, basic LZW with compression ratio (LZW-CR)

with weighted discriminant score (LZW-WDS), Lan-

ge Specific LZW with compression ratio (LS-LZW-CR)

with weighted discriminant score (LS-LZW-WDS) and

gth Frequency product based LZW with compression

(LF-LZW-CR) and with weighted discriminant score

-LZW-WDS), the LID task has been performed and the

lts averaged over the 6 languages for p = 0.3 is re-

ed in Table 2. The graphical illustration of the average

performance for p = 0.3 is also shown in Fig. 2 (WDS

he measure) and Fig. 3 (CR as the measure).

hese experiments justify our claim that the LS-LZW

LF-LZW techniques give discriminative language mod-

by removing the confusable patterns. For a test se-

nce, these methods reduce its classification score for non

ve languages, thereby provide good LID performance.

o the reduction in memory and test data score computa-

complexity is around 25% for the LS-LZW techniques

reas its around 50% for the LF-LZW techniques.

4. Conclusions
propose two discriminative language modelling tech-

es using LZW based LID namely Language Specific-

, in which we remove patterns from the pattern ta-
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Figure 2: Average LID accuracy for p = 0.3 using Weighted
Discriminant Score (WDS) as a measure.
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Figure 3: Average LID accuracy for p = 0.3 using Com-
pression Ratio (CR) as a measure.

ble common to more than one language and LF-LZW, in

which we remove patterns from the pattern table whose

length-frequency product falls below a preset threshold. We

thus maintain the good language modelling capability of the

LZW technique and yet at the same time increase language

discriminability to the pattern tables. This claim is justi-

fied by the LID experiments using these methods, where we
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w a great deal of improvement over the basic LZW tech-

e and bigram technique. All this is achieved at a much

ced computation and memory as well.
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Table 2: Average LID accuracy for p = 0.3 (30% tokenization noise).

Test seq size Bigram LZW-CR LZW-WDS LS-LZW-CR LS-LZW-WDS LF-LZW-CR LF-LZW-WDS

20 66.05 38.5 76.40 49.15 77.32 46.73 78.84

40 66.04 60.78 89.34 70.27 90.39 68.53 90.78

60 66.49 71.41 94.5 80.73 95.42 79.64 95.01

80 71.89 80.19 97.00 87.60 97.67 86.09 97.56

100 73.78 86.73 98.60 91.26 98.23 90.42 98.62

150 78.48 92.00 99.53 97.06 99.53 95.91 99.39

200 81.20 95.59 99.71 98.09 99.60 97.44 99.71

250 82.30 97.19 99.64 99.28 99.86 98.89 100

300 86.35 98.48 100 99.26 100 99.26 100
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