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Abstract
This paper describes a low-complexity and efficient speech clas-
sifier for noisy environments. The proposed algorithm utilizes the
advantage of time-scale analysis of the Wavelet decomposition to
classify speech frames into voiced, unvoiced and silence classes.
The classifier uses only one single multidimensional feature which
is extracted from the Teager energy operator of the wavelet coeffi-
cients. The feature is enhanced and compared with quantile-based
adaptive thresholds to detect phonetical classes. Furthermore, to
save memory, the adaptive thresholds are replaced by a slope track-
ing method on the filtered feature. These algorithms are tested
with the TIMIT database and additive white, car, factory noise,
and compared with other methods to demonstrate their superior
performance and robustness.
Index Terms: robust phonetic/speech classification, quantile fil-
tering, time-scale features, wavelet decomposition.

1. Introduction
The classification of speech signals into voiced/unvoiced/silence
(V/U/S) classes is crucial in various types of speech applica-
tions, such as voice activity detection, noise suppression, auto-
matic speech recognition and speech coding. In principle, V/U/S
classification relies on different feature vectors which are extracted
from the input speech frames. Some classification algorithms are
based on single-dimensional features such as zero crossing rate,
relative energy level, autocorrelation coefficients [1, 2], linear pre-
dictive coding (LPC) and glottal closure indices (GCI) [3], MEL
frequency cepstral coefficients [4] and instantaneous frequency
amplitude spectrum (IFAS) [5]. Another approach combines both
time and frequency domains by using the short time Fourier trans-
form (STFT) [6] or Wavelet transform [7]. These two-dimensional
signal representations certainly improve the classification rate. In
order to achieve high accuracy, most algorithms require many dif-
ferent input parameters.

In this paper, we propose an efficient speech classifier based
on a single wavelet parameter and demonstrate the robustness of
the proposed algorithm. First, every windowed overlapping speech
frame, which has 32ms length and 8ms overlap, is decomposed by
a Wavelet decomposition (WD) at the 3rd scale. Then a multidi-
mensional feature is calculated from the Teager energy operator
(TEO) of the wavelet coefficients. The extracted feature is com-
pressed by sigmoidal function and then filtered by median filtering
to enhance its robustness against noise. Second, the enhanced fea-
ture is compared with a quantile-based adaptive threshold to clas-
sify each frame into V/U/S classes. Furthermore, by applying a
slope tracking method on the processed feature instead of using
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daptive threshold, the V/U/S decisions are also obtained with
r delay and memory requirements. The proposed algorithms
ested with noisy speech database with additive white, car, and
ry noise over a wide range of signal-to-noise ratios (SNRs).
rate evaluations are done to study the impact of gender depen-
e on the algorithm.
The paper is structured as follows: the next section describes
WD, TEO, and feature extraction. Section 3 presents the
tile-based adaptive threshold method. The slope tracking
od is explained in section 4. The evaluations and discussion

shown after that. The final section presents a conclusion and
re research.

2. Multidimensional feature extraction
Time-scale analysis

screte-time signal x[k] can be represented as:

x[k] =
X
m

X
n

〈ψm,n, x〉 ψ̃m,n[k], (1)

re m,n, k ∈ Z. The discrete-time wavelet basis function
n[k] is constructed from iterated filters. Based on that method,
discrete-time signal x[k] can be decomposed into the sum of
pproximation plus L details at L resolution stages as:

x[k] =
∞X

n=−∞

X(L)[2n] · g
(L)
0 [k − 2Ln]+

LX
m=1

∞X
n=−∞

X(m)[2n + 1] · g
(m)
1 [k − 2mn],

(2)

re

X(L)[2n] =
D
h

(L)
0 [2Ln − l], x[l]

E
,

X(m)[2n + 1] =
D
h

(m)
1 [2mn − l], x[l]

E
,

(3)

he approximation coefficients (low-frequency part) and the de-
oefficients (high-frequency part), respectively, at the output of

iterated filter bank with L stages. g
(m)
0 [k] is an equivalent fil-

btained through m stages of lowpass synthesis filters g0[k],
eded by an upsampler by 2. We call Wm,i(n) the sequence
ll wavelet coefficients (i.e, the X(L)[2n] and X(m)[2n + 1])
h are derived by WD at the mth scale of the ith frame, n is
oefficient index, i ∈ Z.
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2.2. Teager Energy Operator

As shown in [9], the TEO is an efficient nonlinear operator for
many speech processing algorithms and speech applications. It
can enhance the discriminability of speech components from noise
[8]. In our research, the TEO expands the difference between the
approximation subband and detail subbands. This improvements is
very useful in case of unvoiced frames dominated by strong noise.
The TEO coefficients Tm,i are calculated by the discrete form of
the TEO introduced in [9] as follows:

Tm,i(n) = W 2
m,i(n) − Wm,i(n + 1)Wm,i(n − 1). (4)

2.3. Sigmoidal delta feature

As observed in Fig. 1, the power of the voiced frames is mostly
contained in the approximation subband and much less in the de-
tail subbands, and vice versa for the unvoiced frames. A relatively
equal power distribution occurs for the silence frames. In detail,
from the statistical properties of speech sounds, we observe that
the spectrogram power in the range 0-1 kHz is very low for un-
voiced fricative frames in comparison with voiced frames consist-
ing of vowels and voiced fricatives. In this research, decomposi-
tion scale is chosen as m = 3 to consider the relation between
frequency band 0 − 1kHz and other higher frequency bands. A
delta parameter which is the power difference between approxima-
tion subband and detail subbands is extracted as:

D(i) =
1

Na

NaX
n=1

T 2
m,i(n) −

1

Nd

NdX
n=1

T 2
m,i(n). (5)

where Na =
N

2m
and Nd = N −Na are the length of the approx-

imation and detail parts, respectively, and N is number of samples
in one speech frame.
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Figure 1: Waveform of speech segment (a), approximation and
details at 3rd scale decomposition (b).

The weak voiced or unvoiced frames result in small values of
the delta D while, in general, the voiced and unvoiced frames give
very high values of D with positive and negative sign, respectively.
In order to balance the impact of the large range of values of D
during processing, the sigmoidal function is applied on D(i) as:

Ds(i) =
2

1 + e−2D(i)
− 1. (6)
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Because of the strong noise at low SNR, the parameter Ds

uates with high variance even during the flat segments of si-
e frames. To make the classifier robust against noise, the pa-
eter Ds is further smoothed by median filtering with window
th of 4 frames still keep a low delay of the output.

3. Quantile-based adaptive threshold
observed that the energy in each wavelet subband, and there-
the delta parameter Ds, is at the noise level over a significant
of the time. Thus, we develop a quantile-based method to es-
te the adaptive thresholds related to the noise level. First, the
values Ds(i) are sorted in ascending order over a buffer of

second length with one frame shiting, then the threshold Tq

etermined by taking the qth quantile as show in Fig. 2. The
tile q = 0.3 has been selected experimentally over the range

ossible values q = 0.0, 0.1, . . . , 1.0.
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ure 2: Quantile-based adaptive threshold for different SNRs.

To make the V/U/S decisions, the compressed delta parameter
i) of each input speech frame is calculated and compared with
etermined threshold by the following rule:

Ds(i) =


V, if Ds(i) > Tq

U, if Ds(i) < −Tq
. (7)

4. Slope tracking method
disadvantages of the quantile method are the need of memory
toring delta values in the buffer and one frame delay. To lower
memory and delay requirements, a slope tracking method on
rocessed parameter is proposed.

Slope generation

frame-based values Ds(i) of a speech signal are filtered by a
pole IIR filter as:

Df (i) = Ds(i) + Df (i − 1). (8)

Although this filter is unstable, it is useful to distinguish be-
n silence and unvoiced sounds which are visible as flat or
nward slopes, respectively, at the output of filter. By using
e-length buffers for processing of input segments, the steady
ease towards infinity, which results from the unstable filter,



can be contained. In general, the parameter Ds has positive val-
ues for voiced frames, negative values for unvoiced frames and
approximates zero for silence frames. Because the filter operates
as the cumulative sum of the elements of Ds, it results in the out-
put parameter Df as upward slope, downward slope, and almost
flat regions for voiced, unvoiced, and silence classes, respectively
(depicted in Fig. 3). In noisy environments, the filtered parame-
ter Df still shows the same slope characteristics as clearly even at
very low SNR of Fig. 4. From that, the phonetic segments can be
classified by a slope detection method which is described later.
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Figure 3: The filtered parameter Df with phonetic segments for
clean speech.
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Figure 4: The filtered parameter Df with phonetic segments for
noisy speech at SNR = 5dB.

4.2. Slope detection and phonetic-smoothing

To detect the rising and falling slopes as well as the flat regions of
the parameter Df , we propose a three-step method to detect the
beginning and end points of the phonetic segments as follows:

∗ First, if the magnitude difference of the parameter Df between
the current frame and the previous frame is bigger than a positive
threshold Tp = 0.5 or smaller than a negative threshold Tn =
−0.1, then the index of the previous frame is marked as the
beginning point of a non-silence phonetic segment and saved in
memory.
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econd, the described procedure is repeated for every couple
the neighboring frames untill it fails. That means the dif-

rence is smaller or larger than the selected thresholds. Then
e total magnitude difference DT of the smoothed parameter
f between the beginning frame and the current frame is cal-
lated and compared with another threshold Tc = 10/1.5 for
iced/unvoiced classses, respectively. If DT is higher than Tc,
e position of the current frame is marked as the end point and
e segment is labeled with the corresponding class. Otherwise,
e beginning point is replaced by the current point and the pro-
ss is continued till the end of the buffer.

hird, after all voiced and unvoiced segments are found, the re-
aining segments will be marked as silence automatically.

lly, occasionally occurring incorrect decisions, which are due
on-stationary noise and transient sounds, are repaired by a
e-based smoothing method which enforces sequential consis-
y of speech sounds such as: VVSVV → VVVVV, etc. The
V/U/S labeling of a noisy recording is illustrated in Fig. 5
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igure 5: Sigmoidal delta Ds and V/U/S labeling (a), filtered
lta Df and V/U/S labeling (b) for white noise at 5dB SNR.

The advantage of processing with the running integrator is the
ng of memory and lower delay. Only the beginning and end
ts need to be stored in memory. In addition, it exploits the con-
ity of speech sounds to classify long segments into phonetic
ses without separate frame by frame detection as in most other
ent algorithms. This provides highly reliable performance for
inuous sounds.

5. Evaluations and discussions
speech data used to build the experiment dataset is extracted
the TIMIT database. Two gender-dependent sets of female

and male (M) are selected with 50 continuous utterances for
set (ca. 2000 frames). The speech signals (Fs=16kHz) are ar-

ially corrupted with additive white, car, and factory noise over
SNR(dB) range of [30 20 10 5]. In this research, the closure
release frames of plosives are not counted because they cannot
etermined as voiced or unvoiced sounds clearly. The reference
ls (V/U/S) of the input speech frames which are derived from
TIMIT transcriptions are compared with the phonetic labels
e output of three classifiers which are based on the adaptive

shold (ADP), slope tracking (SLO), and GCI in [3].



Tabs. 1-3 show the average classification error rates calcu-
lated from confusion matrices over the total of frames of three
classes V/U/S for the female and male datasets with clean and
noisy recordings. For all three different types of noise, the ADP
method always provides up to 2.5% lower error rate than SLO
method for factory noise case. It is expected because the ADP
method is based on a globally adaptive threshold while the SLO
method is not. However, the latter method with the running in-
tegrator saves required memory during the tracking of phonetic
classes. We observe that these wavelet-based methods have lower
average error rates than the GCI-based method with clean speech,
and noisy speech with SNRs down to 5dB. Due to the highest
complexity of factory noise which includes transient, colored, and
non-stationary noise, the outputs in this case drop down about 6%
and 3% in comparison with the outputs of the white and car noise
cases, respectively.

Clean 30 20 10 5
ADP F 6.23 6.62 7.63 8.47 12.49

M 6.78 7.11 8.33 9.98 13.47
SLO F 6.47 7.08 7.88 9.23 13.64

M 7.63 8.98 8.92 11.17 14.23
GCI F 7.12 7.39 8.63 10.39 15.81

M 8.65 9.12 9.82 12.24 16.91

Table 1: Avarage error rates (%) for white noise.

Clean 30 20 10 5
ADP F 6.23 7.00 8.16 9.93 14.56

M 6.78 8.26 10.02 11.25 15.98
SLO F 6.47 7.46 8.89 11.21 16.34

M 7.63 8.93 10.51 12.47 17.89
GCI F 7.12 8.09 9.53 13.85 19.06

M 8.65 9.78 11.37 11.26 21.23

Table 2: Avarage error rates (%) for car noise.

Clean 30 20 10 5
ADP F 6.23 7.89 9.87 13.03 18.38

M 6.78 8.78 11.53 15.09 17.17
SLO F 6.47 8.82 11.93 14.67 20.09

M 7.63 8.34 13.81 16.21 23.27
GCI F 7.12 9.78 13.05 17.96 23.81

M 8.65 10.69 15.84 20.52 25.01

Table 3: Avarage error rates (%) for factory noise.

By analyzing the confusion matrix of the output of the
wavelet-based method, we recognize that the error rate of the si-
lence class increases by the effect of strong noise while the clas-
sification error rates of voiced and unvoiced classes are somewhat
robust in noisy conditions. The performance of the proposed algo-
rithms for clean speech are lower than the one obtained by neural
network based method in [7]. This is expected because the NN-
based method is more complex with 6 input features and trained
only for classifying the clean speech signal.

As observed from Tabs. 1-3, it seems that the female dataset
provides lower error rate than the male dataset for all three classi-
fiers. The average difference of the average error rates over the de-
termined range of SNRs obtained by the wavelet-based methods is
lower than the result obtained from the GCI-based method, (1.33%
compared with 1.77%), but higher than the one in [7] (1.14%).
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6. Conclusions and outlook
-performance phonetic classification algorithms are devel-
based on discrete-time Wavelet decomposition and the Tea-

energy operator. They exhibit a very low-complexity as the
sifiers use only a single parameter. The results presented in
paper illustrate the effectiveness of the time-scale feature ex-
ed from the wavelet coefficients. The quantile-based adaptive
shold method provides quite robust performance but requires
ffer of frames to determine the quantile threshold, and thus
lts in delay. The proposed three-step method for slope detec-
overcomes this shortcoming by using a running integrator to
memory and delay, and produces better performance than the

pared methods. The testing on a larger database is necessary
lidate the robustness of the proposed algorithm. Furthermore,

application of the proposed algorithms in designing VAD for
st speech recognition systems in [11] should be investigated
aluate their effectiveness with respect to the recognition rate.
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