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Abstract

Concatenative intonation systems model the intonation con-
tours as the concatenation of small natural units extracted from
suitable contexts. The special characteristics of this type of
models make it difficult to include some factors whose effect
overcomes the phonic group domain. In this paper one of those
factors, the f0 reset related to the sentence internal pauses, is
addressed.

Index Terms: intonation unit selection, speech synthesis.

1. Introduction

Intonation is widely acknowledged as the most important factor
for the perception of prosody, so much that not only the natural-
ness but the intelligibility of a speech synthesizer is highly de-
pendent on the design of an appropriate intonation module. In
the literature there are many different approaches to the prob-
lem of intonation, from the ones that model the phenomenon
as a sequence of tones interrelated by a grammar ([1]), to the
superpositional models that consider the frequency contour as
the result of the addition of several components with different
temporal scopes ([2]).

In the last years corpus–based intonation models have been
proposed ([3], [4]). Under the same principles of the corpus–
based acoustic unit selection ([5]), the global frequency con-
tour is generated by the concatenation of smaller natural units
selected from a suitable context. The intonation contours gen-
erated by these methods can be almost indistinguishable from
the natural ones, but their performance depends heavily on the
proper characterization of the context of the basic unit for con-
catenation. In this paper we will study an aspect that is not paid
too much attention in these models, the f0 reset after a sentence
internal pause, crucial for preserving the tonal coherence among
the phonic groups at the sentence level.

The outline is as follows. Section 2 describes the main char-
acteristics of the corpus employed in this research. Section 3
begins with a study of the influence of several factors on the f0
values at the beginning and the end of the phonic group, in or-
der to justify the need for a model of f0 reset in concatenative
intonation methods. In Section 4 two approaches for this model
are considered, linear regression and neural networks, with the
results presented in Section 5. Finally, Section 6 is dedicated to
the conclusions and suggestions for future research.
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2. Corpus description
this study a corpus recorded by two male speakers was
d. It consists of about 1300 isolated sentences, from which
were manually designed by an expert linguist to be a rich

sodic sample of the Galician language, and the remaining
were automatically collected in order to include more com-

x prosodic structures. The fundamental frequency contours
re extracted using Praat (www.praat.org), with a further pro-
sing for removing those values corresponding to voiceless
ions according to the underlying phoneme identity.
The prosodic corpus information was organized into accent

ups, defined as a sequence of non accented words ending
an accented word, and phonic groups, defined as a sequence
words between pauses. The accent groups were clustered
ording to previous linguistic knowledge ([6]) into 48 differ-
classes, taking into account the type of proposition (declar-
es, interrogatives, exclamatories and ellipsis), the position
hin the phonic group (initial, final, medial, and initial and
al) and the position of the accented syllable within the accent
up (last, penultimate and antepenultimate).
Table 1 shows the distribution of the accent groups in both

pora, according to the type of proposition (ProType) and
position within the phonic group (Position). The average
ber of accent groups per phonic group is 3.05 for Speaker 1
2.87 for Speaker 2.

ProT ype Position

Dec Int Exc Ell In Med Fin In&Fin

Speaker 1 4853 1044 342 221 1596 2693 1713 458

Speaker 2 4801 1067 330 168 1608 2455 1809 494

Table 1: Accent group distribution

. The f0 reset in concatenative intonation
models

thorough evaluation of the performance of the system pre-
ted in [7] showed a general good quality, but also some spo-
ic flaws in sentences with several phonic groups. In those
es, although the intonation of every phonic group was nat-
l, when concatenated the overall impression was bad, as a
ult of a lack of tonal coherence across consecutive phonic
ups.
In [8] the intonation differences between consecutive termi-
sentences and the same sentences presented as coordinated
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Figure 1: Histograms of the phonic group initial f0. Beginning
of sentence (top), and not beginning of sentence (bottom)

clauses were studied, finding that the intonation contours were
steeper and presented greater amounts of resetting in the for-
mer ones. The intonation model in [7] selects the best sequence
of accent groups from the prosodic corpus taking into account
only the available candidates in each cluster according to the
classification shown in Section 2, this is, initial accent groups
for the first accent group of a target phonic group, and so on,
which implies that the internal boundaries are treated in a very
similar manner than the beginning and the end of the sentence.
Although the position of the phonic group within the sentence
and the phonic group type of final pause are considered during
selection, it does not seem to be enough to obtain always a f0
reset after the internal boundaries of the sentence that respects
the tonal coherence of the natural intonation.

In order to solve this problem, a preliminary study of the
variation of the phonic group initial and final f0 values was
carried. All the results presented in this section were obtained
for Speaker 1, but it is important to note that exactly the same
tendencies existed in the other Speaker’s data. Figure 1 shows
two histograms of the phonic group initial f0, being it sentence
initial (top), and not sentence initial (bottom). Both distribu-
tions are fairly different, being their average values 101.96 Hz
(top) and 81.88 Hz (bottom). A two-tailed t-test was per-
formed, finding that the differences were highly statistically sig-
nificant (p − value < 0.001). A parallel test was carried ex-
cluding the interrogative sentences, usually with much higher
initial f0 values at the beginning of the sentence, but the re-
sults were still highly statistically significant, with an average f0
value at the beginning of sentence of 99.41 Hz. With respect to
the final f0 value, Figure 2 shows two similar histograms taking
into account whether the phonic group is at the end of the sen-
tence (top) or not (bottom). In this case the differences, highly
statistically significant as well, are even more obvious than be-
fore, being the average values 64.71 and 77.28 Hz respectively.

These results agree with [9], and confirm the need to in-
troduce a model of the f0 reset after internal pauses within the
sentence. With this problem in mind, a study of the influence of
several features into the phonic group initial and final f0 values
was conducted. Figure 3 shows the initial and final f0 values as
a function of the phonic group position. As it can be seen, the
non initial phonic groups have an average initial value close to
80 Hz, and their differences were found to be not statistically
significant. In the special case of the first phonic group, the val-
ues from sentences with only one phonic group and more than
one were clustered, as a separate test showed no statistically
significant differences between both cases (p − value = 1).
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ure 2: Histograms of the phonic group final f0. End of sen-
ce (top), and not end of sentence (bottom)
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ure 3: Initial and final f0 values as a function of the phonic
up position within the sentence

th respect to the final f0, the difference is also highly statis-
lly significant between the last phonic group and the others,
not in the remaining cases. The influence of the position of
phonic group within the sentence with respect to the initial
final f0 values was also reported in [8] and [10].
The influence of the number of accent groups within the
nic group with respect to its initial and final f0 values (ex-

ding sentence initial and final boundaries) was also stud-
, finding that the initial values were in all cases around
Hz, without statistical differences, as well as the final val-
, slightly lower. These results agree with [10], although there
length of the phonic group was measured in number of syl-

les. Other features were studied, such as the effect of the
ber of phonic groups within the sentence, with very small

ferences in the average values (around 3 Hz in both cases),
with a great variance in the final f0 data.
These results show the variability of the initial and final f0

ues according to several features. In the context of a con-
enative intonation model, this means that no every phonic
up initial accent group is equally suitable after an internal
se. Therefore, as mentioned before, it is necessary a model

f0 reset taking into account the variability at both sides of the
ernal boundary. Next section will be dedicated to this task.

4. Models of f0 reset
le 2 displays the input parameters that were taken into ac-
nt in the different tests. The type of proposition (ProType)
luded the same classification as mentioned in Section 2, as
ll as the accent parameters (Ac1, Ac2). The duration of the



pause (Dur) was measured in seconds, and the initial and final
f0 values (Freqi, Freqi−1), in Hertz.

Table 2: Parameters considered in the models

Parameter Meaning

ProType Type of proposition

PgPos Index of the phonic group within the sentence

PgNum Number of phonic groups within the sentence

Ag1 Number of accent groups (preceding phonic group)

Ag2 Number of accent groups (next phonic group)

Ac1 Last accent position (preceding phonic group)

Ac2 First accent position (next phonic group)

Dur Duration of the pause

Freqi−1 F0 value (end of preceding phonic group)

Freqi F0 value (beginning of next phonic group)

The f0 at the beginning of the next group (Freqi) was mod-
eled both in the logarithmic and natural domains, but it seemed
to behave better in the latter one, so from now on we will only
consider this one. The following sections are dedicated to the
two types of models studied in this work: linear regression and
neural networks. A rule based method was also considered
at first, but it was discarded as it would probably need more
linguistic information. The proposed methods have the advan-
tages of allowing a completely automatic, language independent
training and avoiding the need for expert knowledge.

4.1. Linear regression model

A stepwise linear regression model was trained for the f0 re-
set after an internal pause. Taking a set of features as input,
the stepwise regression chooses a suitable combination of them
for explaining the behavior of the dependent variable. In this
case, we used a forward stepwise regression, beginning with an
empty subset of input features, and adding incrementally the
most statistically significant feature in each step, until no sta-
tistically significant terms remained. The minimum p-value for
an input parameter to be removed from the model was set to
0.10 (being the null hypothesis that coefficient to be zero).

Equation (1) shows the model resulting from this training.
Although there were not significant differences in the results,
the inputs were normalized (z − scores) so that the model co-
efficients can give a hint about the importance of each term.

Freqi = 94.21 − 0.73 × PgNum + 0.92 × PgPos
+0.67 × Ag1 + 1.05 × Ag2− 0.51 × Ac2

+1.32 × Dur + 13.06 × Freqi−1

(1)
Two factors were excluded from the model. The first one,

the type of proposition (ProType), is probably excluded as a
consequence of the considered classification, perhaps too naive
for this phenomenon. A finer classification taking into account
cases such as enumerations or explanations (“The boy, who
came the other day, . . . ”) would probably improve the model.
With respect to the second one, the position of the preceding
phonic group last accent (Ac1), it does not seem to add impor-
tant information to the last frequency parameter (Freqi−1). On
the other hand, the most important feature is Freqi−1, to which
most of the explained variance can be ascribed. With regards
to the rest of the parameters, the most relevant ones seem to be
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pause duration (Dur), the number of accent groups in the
ond phonic group (Ac2) and the position of the phonic group
hin the sentence (PgPos), in this order.

. Neural network model

ining a neural network is a much harder task than training a
ear model, as there are many decisions that can affect dras-
lly the final performance of the model, such as the number

hidden layers or the number of neurons in each layer. With
ards to the input layer, the addition of new parameters can
n lead to worse results if these are found to be noisy, as the
work does not make any assumption on the nature of the de-
dent variable, and simply tries to find the best combination

weights for explaining it as a function of the input.
In this case, we decided to use a multi–layer perceptron

h a hidden layer of nodes, as it is known to be a univer-
approximator ([11]). After a preliminary set of tests where
eral configurations were considered, a network with one hid-
layer of 20 neurons fully connected to the input nodes was

nd to produce the better results. The algorithm for adjusting
weights was backpropagation ([11]), with the considered set

parameters as input (see Table 2) and the next phonic group
tial f0 (Freqi) as output. The algorithm for finding the best

bination of weights was cross-validation, dividing the data
o three different sets: training, validation and test. Moreover,
the performance of the network may be very dependent on
distribution of the data along these sets, the training was re-
ted n (n = 30) times with different seeds for their random
eration. This way, the performance of a certain configura-

n was considered to be the average value of the root mean
are error (RMSE) and explained variance (R2) over the

t data after the n repetitions of the training.
Finally, for finding the best subset of input parameters, ev-
possible combination was considered. So, with 9 input pa-
eters (see Table 2), 511 different models were trained ac-

ding to the steps described in the preceding paragraph. The
ole process was computationally expensive, less than three
s in an Athlon XP 3 GHz, but feasible as it was completely
omatic.
After the experiment there was a set of combinations yield-
quite similar results, but the best one included only four

ut parameters: the position of the phonic group (PgPos),
number of accent groups in the second phonic group (Ag2),
duration of the pause (Dur) and the final frequency before
pause (Freqi−1), being this last parameter the most impor-

t one in the model. Although in [10] it was found that there
s no relationship between the length of the phonic group and
initial and final f0 values, in this case we are referring to the
reset after a pause, and it seems to be important both in the
ral network and linear regression models, where it has the

rd bigger coefficient (see Equation (1)). In the neural net-
rk model it is even the second most important parameter.

5. Results
le 3 shows the root mean square error (RMSE), the ab-

ute error average (|Mean|), the variance (V ar) and the ex-
ined variance (R2) of both models. The neural network with
same parameters of the linear regression model had a sim-
performance, but the variance of the error was larger after
n different trainings (see Section 4.2). Finally, the neural

work one was preferred, given its smaller error variance over
test data, as shown in Figure 4. Obviously, a linear regres-
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Figure 4: Histograms of the errors in the linear regression (top)
and neural network (bottom) models

sion method can not capture some non linear effects such as the
initial versus non initial distinction in Figure 3.

RMSE |Mean| V ar R2

Linear regression 8.59 6.57 73.63 0.70

Neural network 7.92 5.62 57.46 0.74

Table 3: Models performance (units are Hz)

The neural network model was applied to our bilingual
Galician and Spanish synthesizer Cotovı́a ([7], [12]), with very
encouraging results after the first informal listening tests, al-
though a more thorough evaluation is needed. The model was
included into the intonation concatenation cost function, and it
was implemented as the difference between the initial f0 value
of the next accent group and the desired value generated by
the model. Finally, as more variability can be allowed across
pauses, a threshold around the desired value was enabled, such
that the accent groups with a close enough initial f0 are given a
null concatenation cost. The informal tests showed a threshold
of 10 Hz as a reasonable choice.

6. Conclusions
In this paper a novel method that takes into account the f0 reset
of the intonation contour across pauses within a sentence was
introduced. First, a study of the intonation contours behavior
as a function of several features like the position of the phonic
group within the sentence or the number of accent groups was
presented, showing some evidence of their influence into the
phonic groups initial and final f0 values. After that, two differ-
ent approaches based on linear regression and neural networks
were proposed for modeling the fundamental frequency differ-
ence at both sides of the pause.

The obtained model was integrated into a unit selection
speech synthesizer. Although it is obvious that a closer eval-
uation is needed, the preliminary tests are promising. From the
authors’ point of view, the intonation modeling has reached a
state such that those aspects of the natural intonation that are
not currently considered are clearly audible and affect the qual-
ity of the synthetic contours. In this case, the model here in-
troduced avoids not only the excessively large excursions of the
intonation contour after a pause, but the extreme continuity that
can also be unnatural depending on the context. As a future
line, it would be interesting to include a finer linguistic classi-
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tion for the type of sentence, as it would likely improve the
formance of the model considerably. Finally, although the
del was designed in the context of a concatenative intona-
n model, it is important to note that this problem exists in
ry intonation model, and the method proposed here could be
ily applied to other approaches such as the superpositional
dels.
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