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Abstract 

In this paper a compensation method is proposed to 
address the problem of limited enrolling data in speaker 
verification. Instead of adapting the client HMM, the 
technique presented here modifies the verification speech 
signals by maximizing the a posteriori p.d.f. in order to 
optimize the reduction in intra-speaker variability. The 
proposed approach can lead to reductions of 38.9% and 
61.8% in EER and in the integral below the false-
acceptation / false-rejection ROC curve, respectively. 
Index Terms: speaker verification, limited enrolling data. 

1. Introduction 

From the usability point of view, the enrolling procedure 
in speaker verification (SV) system should be fast and 
efficient. However, limited enrolling data leads to poorly 
trained models, which in turn seriously degrades the 
accuracy of SV engines.  Moreover, additive and 
convolutional noise is usually one of the most important 
problems faced by speech and speaker recognition 
systems in real applications. On the other hand, several 
noise canceling technique have been proposed to handle 
additive and convolutional noise [1][2][3][4]. These noise 
cancellation techniques can substantially reduce the 
mismatch between training and testing conditions as far as 
additive and convolution distortion is concerned. 
However, they do not improve the generalization ability 
of trained models from the intra-speaker variability point 
of view. 

The limited enrolling data problem in SV has been 
addressed by several authors using HMM adaptation 
methods. Those techniques adapt HMM parameters 
employing speech data that is input by the user in 
verification events after enrolling. The HMM parameters 
are usually re-estimated by means of applying maximum 
likelihood (ML) criteria [5][6], Bayesian Maximum a 
Posteriori (MAP) [7] adaptation, and Maximum 
Likelihood Linear Regression (MLLR) [8]. Those 
methods are classified as supervised or unsupervised 
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ending on the requirement of human assistance to 
scribe and label the adaptation data. Supervised 
ptation techniques, although more effective than 
upervised approaches, are impractical on large-scale 
 based services. On other hand, the unsupervised 
ssification of adaptation data introduce an error in the 
M parameter re-estimation procedure, which in turn is 
pagated into further verification events. 
In this paper an intra-speaker variability compensation 
roposed to reduce the distortion between verification 

nals and the client HMM. Instead of adapting the client 
M, the approach described here modifies the 

ification signals using MAP estimation. The results 
sented show reductions of 38.9% and 61.8% in EER 
 the integral below the false-acceptation (FA) / false-
ction (FR) ROC curve, respectively. Due to the fact 

t the client HMM is not modified, the error caused by 
classification of adaptation data is avoided. Moreover, 
 proposed compensation scheme also leads to a noise 
oval effect. Finally this approach has not been found 
he specialized literature. 

2. Intra-speaker variability modeling 

the text-dependent SV task considered here, each 
rance is processed with the forced-Viterbi algorithm in 
er to estimate the normalized log likelihood 

( )L O [9]:  
log ( ) log ( / ) log ( / )SD SIL O P O P Oλ λ= −             (1) 

ere O is the observation sequence; and, ( / )SDP O λ  and 

/ )SIO λ  represent the likelihood related to the speaker 

endent ( SDλ ) and independent ( SIλ )  models, 

pectively. Both models, SDλ  and SIλ , correspond to the 

uence of triphone HMM’s that compose the testing 
uence O . In order to estimate the false-rejection and 
e-acceptance error curves, the normalized log 
lihood log ( )L O  is divided by the number of frames 

 in the verification utterance: 
log ( )

log ( ) '
L O

L O
T

= . It is 
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worth highlighting that SDλ  is estimated with the enrolling 

data pronounced by the client, and SIλ  is estimated with a 

set of impostors. 
Given a state (s) in SDλ  and the enrolling data, the 

intra-speaker variability is modeled in this paper as the 
averaged distance between the mean of the observation 
probability function associated to s and the frames 
allocated to this state as a result of the forced Viterbi 
alignment. This alignment associates a state within the 
HMM sequence to every frame. As a consequence, the 
state allocated to frame O(t) is denoted by s(t). If s tμ ( )  is 

the vector mean of the observation probability of state 
s(t), the distance between frame O(t) and s(t), d(t), is 
expressed by: 

( )2

,
1

( ) ( , )
N

s t n
n

d t O t nμ ( )
=

= −∑                       (2) 

where ,s t nμ ( )  and ( , )O t n  indicate the nth coefficient in s tμ ( )

and ( )O t , respectively; and, N is the number of 
parameters. In order to obtain  the intra-speaker 
variability p.d.f., the histogram of d(t) was estimated using 
enrolling utterances from an evaluation database 
composed of 13 speakers after training the speaker 
dependent HMM’s. The resulted histogram is shown in 
Fig. 1. As can be seen in this figure, the p.d.f. of d(t) can 
be modeled with a gamma distribution Pr( )d [10]: 

( ) 1Pr( ) exp pd A d dα −= ⋅ − ⋅                      (3) 

where
[ ]

[ ]

E d

Var d
α = ; 

2[ ]

[ ]

E d
p

Var d
= ; A is a normalizing term; 

and, [ ]E d  and [ ]Var d  are the mean and variance of the 
histogram of d(t), respectively. To simplify the notation, 
the argument t was withdrawn from d(t) in (3). 

3. Feature Compensation 

If ( )O t�  and ( )O t  denote the compensated and observed 
frames, respectively, the compensation is expressed with:  

( )  ( ) ( )
optimal

O t O t O t= + Δ⎡ ⎤⎣ ⎦
�                    (4) 

where ( )
optimal

O tΔ⎡ ⎤⎣ ⎦  is the correction component at instant 

t. ( )
optimal

O tΔ⎡ ⎤⎣ ⎦  is modeled here as a fraction of the 

multivariate vector distance between ( )O t  and ( )s tμ :  

( )( ) ( ) - ( )
optimal optimal

s tO t K t O tμ⎡ ⎤Δ = ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦            (5) 

where ( )
optimal

K t⎡ ⎤⎣ ⎦  represents the optimal fraction of the 

vector distance ( ) - ( )s t O tμ⎡ ⎤⎣ ⎦ . 

The compensation component ( )
optimal

O tΔ⎡ ⎤⎣ ⎦  is 

estimated by maximizing the a posteriori p.d.f. 
Pr ( ) / ( ), ( )O t O t s tΔ⎡ ⎤⎣ ⎦ . Using the Bayes theorem, the 

ma
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ximization of Pr ( ) / ( ), ( )O t O t s tΔ⎡ ⎤⎣ ⎦  can be expressed as 

]: 

{ }
( )

( )

( ) arg max Pr ( ) / ( ), ( )

Pr ( ) / ( ), ( ) Pr ( ) / ( )
    arg max

Pr ( ) / ( )

optimal

O t

O t

O t O t O t s t

O t O t s t O t s t

O t s t

Δ

Δ

Δ = Δ =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎧ ⎫Δ ⋅ Δ⎡ ⎤ ⎡ ⎤⎪ ⎪⎣ ⎦ ⎣ ⎦
⎨ ⎬

⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭

    (6) 

 can be seen in (6), Pr ( ) / ( )O t s t⎡ ⎤⎣ ⎦  does not depend on 

t . Also, Pr ( )/ ( ), ( )O t O t s tΔ⎡ ⎤⎣ ⎦  is equivalent to 

( ) ( )( ) / ( ), ( )s t s tO t O t s tμ μ⎡ ⎤= − Δ⎣ ⎦�  due to the model in (4), 

ere ( )s tμ�  would be the mean of the compensated 

ervation probability of state s(t). Consequently, 
( ) / ( ), ( )O t O t s tΔ ⎤⎦  can be written as 

( ) ( ) / ( ), ( )O t O t O t s t+ Δ Δ ⎤⎦ , which in turn is equal to 

( ) ( ) / ( )O t O t s t+ Δ ⎤⎦ . Moreover, ( )O tΔ  is modeled with 

( )t  in Pr ( ) / ( )O t s tΔ⎡ ⎤⎣ ⎦ , which in turn is supposed 

ependent of s(t) and is replaced with ( )Pr ( )s t O tμ⎡ ⎤−
⎣ ⎦

�

indicated in (3). Then, the optimization in (6) is 
uced to: 

{ }( )
( )

( )

   arg max Pr ( ) ( ) Pr ( ) / ( )

optimal

s t
O t

O t

O t O t O t s tμ
Δ

Δ =⎡ ⎤⎣ ⎦

⎡ ⎤ ⎡ ⎤− − Δ ⋅ ⎣ ⎦⎣ ⎦
�     (7) 

placing ( )O tΔ  with ( )( ) - ( )s tK t O tμ⎡ ⎤⋅ ⎣ ⎦  as shown in (5), 

 maximization expression (7) is equivalent to: 

( ) ( ){ }( )
( )

( )

     arg max Pr 1 ( ) - ( ) Pr ( ) / ( )

optimal

s t
K t

K t

K t O t O t s tμ

=⎤⎦

⎡ ⎤ ⎡ ⎤− ⋅ ⋅⎢ ⎥ ⎣ ⎦⎣ ⎦
� (8) 

In this paper the speaker-dependent observation 

bability Pr ( ) / ( )O t s t⎡ ⎤
⎣ ⎦
�   is modeled with a single 

ussian with diagonal covariance matrices. If  2
( ),s t nσ

responds to the variance of coefficient n

r ( ) / ( )O t s t⎡ ⎤
⎣ ⎦
� , then (8) can be written as: 

( )

( )

1

( )

( )
( )

2

( ), ( ),

2
1 ( ),

( )

1 ( ) - ( )

rg max exp 1 ( ) - ( )

( , ) ( ) - ( , )1
exp

2

optimal

p

s t

s t
K t

N s t n s t n

n s t n

t

A K t O t

K t O t

O t n K t O t n

μ

α μ

μ μ

σ

−

=

=⎤⎦
⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎡ ⎤⋅ − ⋅⎡ ⎤⎣ ⎦ ⎣ ⎦⎪ ⎪
⎪ ⎪⎪ ⎪⎛ ⎞⎡ ⎤⎡ ⎤⋅ − − ⋅⎡ ⎤⎨ ⎬⎜ ⎟⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦⎝ ⎠⎪ ⎪
⎪ ⎪⎡ ⎤⎡ ⎤+ ⋅ −⎪ ⎪⎢ ⎥⎣ ⎦⋅ −⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∑

(9) 

he Log domain (9) can be expressed as: 



( )
( )

( )

( )

( )
( )

2

( ), ( ),

2
1 ( ),

( )

log( ) ( 1) log 1 ( ) - ( )

arg max 1 ( ) - ( )

( , ) ( ) - ( , )1

2

optimal

s t

s t
K t

N s t n s t n

n s t n

K t

A p K t O t

K t O t

O t n K t O t n

μ

α μ

μ μ

σ=

=⎡ ⎤⎣ ⎦
⎧ ⎫
⎪ ⎪
⎪ ⎪⎡ ⎤+ − ⋅ − ⋅⎡ ⎤⎣ ⎦ ⎣ ⎦⎪ ⎪
⎪ ⎪

⎡ ⎤− ⋅ − ⋅⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦
⎪ ⎪
⎪ ⎪⎡ ⎤+ ⋅ −⎪ ⎪⎣ ⎦−⎪ ⎪
⎩ ⎭

∑

 (10) 

Computing the partial derivate with respect to K(t) and 
setting it to zero: 

   

( )2

( ),

2
1 ( ),

( )

( , )
1 ( )

1
   ( ) 0

1 ( )

N
s t n

n s t n

s t

O t n
K t

p
O t

K t

μ
σ

α μ

=

⎡ ⎤−⎢ ⎥− ⋅⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

−⎡ ⎤+ ⋅ − − =⎣ ⎦ −

∑
              (11) 

This quadratic equation provides two solutions: 

( ) ( ) ( )
2

( ) ( )

( )

( ) ( ) 4 11
1

2 ( ) ( ) ( )

optimal

s t s t

K t

O t O t p

t t t

α μ α μ

=⎡ ⎤⎣ ⎦
⎛ ⎞⎡ ⎤⎜ ⎟− ⋅ − ⋅ − ⋅ −⎢ ⎥⎜ ⎟− ⋅ ± +⎢ ⎥Ω Ω Ω⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

(12) 

where 
( )2

( ),

2
1 ( ),

( , )
( )

N
s t n

n s t n

O t n
t

μ
σ=

−
Ω =∑  and the solution ( ) 1K t ≥

was discarded. Finally, the compensation scheme was 
applied as follows: 

( ) ( )

( )

( ) - ( ) ,    if - ( )

0,                                           otherwise

optimal

optimal

s t s t

O t

K t O t O t Rμ μ

Δ =⎡ ⎤⎣ ⎦
⎧ ⎡ ⎤⋅ ≤⎡ ⎤⎪⎣ ⎦ ⎣ ⎦⎨
⎪⎩

     (13) 

where R is a threshold that defines a compensation region.

4. Experiments 

The FA and FR curves [needed to compute the Equal 
Error Rate (EER)] were estimated with 31 speakers (11 
males and 20 females) and the speaker-independent 
HMM, used in the likelihood normalization (1), was 
trained with 150 speakers. All the speech signals were 
recorded on the telephone line. The HMM’s were trained 
with the Baum–Welch algorithm. Each speaker 
pronounced his first and family names eight times (3 for 
enrolling and 5 for verification) and the corresponding 
impostors repeated the client’s first and family names one 
time each. The impostor universe for a given client is 
defined by the speakers with the same genre. As a 
consequence, every speaker-dependent HMM was trained 
with only three utterances. FR curves were estimated with 
(11 male-speakers + 20 female-speakers) x 5 verification 
utterances = 155 signals. FA curves were estimated with 
(11 male-speakers) x 10 impostor signals plus (20 female-
speakers) x 19 impostor signals = 490 signals. The 
distribution of d defined in (2) and shown in Fig.1 was 
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imated with an evaluation database composed of 13 
akers that were different from the testing database.
Enrolling and verification utterances are decomposed 
a sequence of triphones. Thirty-three cepstral 

fficients are computed per frame: the frame energy 
s ten static coefficients and their first and second time 
ivatives.  Each triphone was modeled with a three-state 
-to-right HMM topology without skip-state transition, 
h one multivariate Gaussian density per state in 
aker-dependent models, and eight multivariate 
ussian densities per state in the speaker- independent 
del. Both models employed diagonal covariance 
trices. The baseline system gave an EER equal to 
4%. Results are presented in Table 1-2 and Figs. 2-4. 

5. Discussions and conclusion 

cording to Fig. 2 and Table 1, the proposed 
pensation method can lead to reductions as high as 

9% in EER. Although the reduction in EER is highly 
endent on R in (13), Figure 2 shows that is a wide 
ge of R where the scheme presented here provides 
nificant improvements in speaker verification accuracy. 
 can be seen in Fig. 3 and Table 2, the integral below 
 ROC curve with R in (13) equal to 40 is 61,8% lower 
n the integral below the ROC curve given by the 
eline system. The improvements in the discrimination 
lity can also be observed in Fig. 4 where the FR and 
 curves obtained by the compensation method are 
pared with those provided by the baseline system. 

sides the reduction in EER, Figure 4 also suggests that 
 separation between the FR and FA curves is increased 
the technique described here. 
The compensation scheme in (13) tends to reduce the 

tance between frames and states when R increases, 
ich in turn makes the FR error rate decrease. On the 
er hand, there is a wide range of values for R where the 
 error rate also decreases. This may be due to the fact 
t the compensation method also accounts for a 
uction of the mismatch between training and testing 
ditions. To improve the accuracy of the proposed 
pensation method by including the dependence on 
netic class and by incorporating a model for the effect 
 can be proposed as future research.
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R2 EER Improvement 

0 (Baseline) 11,4% 0,0% 

1000 8,0% 29,8% 

1600 7,0% 38,9% 

1800 8,0% 29,8% 

2500 9,8% 14,0% 
Table 1: EER (%) vs R2 as defined in (13) employing the 
compensation method proposed here. 
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R2 ROC Area Reduction 

0 (Baseline) 487,2 0,0% 

1000 268,1 45,0% 

1600 186,3 61,8% 

1800 217,6 55,3% 

2500 399,1 18,1% 
le 2: Integral below the ROC curve vs R2 as defined in (13) 
loying the compensation method proposed here. 
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