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ABSTRACT 

We present a speaker recognition system with multiple GMM 
tokenizers as the front-end, and vector space modeling as the 
back-end classifier. GMM tokenizer captures the acoustic and 
phonetic characteristics of a speaker from the speech without 
the need of phonetic transcription. To enhance the speaker 
characteristics coverage and provide more discriminative 
information, a speaker clustering algorithm is proposed to 
build multiple GMM tokenizers that are arranged in parallel. 
For an input utterance, each of the tokenizers outputs a token 
sequence, which is then represented by a vector of n-gram 
probabilities. Multiple vectors are concatenated to form a 
composite vector. Finally the Support Vector Machine (SVM) 
is used as the back-end classifier of the composite vectors. We 
use the 2002 NIST Speaker Recognition Evaluation (SRE) 
corpus for training GMM tokenizers and background 
modeling, and evaluate on the 2001 NIST SRE corpus. 
Index Terms: speaker recognition, speaker clustering, GMM 
tokenization

1. INTRODUCTION

Text-independent speaker recognition has made much progress 
in the past decade by using the conventional spectral/prosodic 
features, such as Gaussian Mixture Modeling (GMM) on 
amplitude spectrum based features [1], Support Vector 
Machine (SVM) on Shifted Delta Cepstral (SDC) [2], and 
Prosodic Dynamics Modeling [3]. In recent years, some 
tokenization methods with higher level information have been 
attracted great interests. These tokenization methods convert 
the speech into different sizes of tokens, such as words, phones 
and GMM tokens. For example, lexical features based on word 
n-grams has been studied in [4] for speaker recognition; 
Parallel Phone Recognition followed by Language Modeling 
(PPRLM) [5] has been extensively adopted in language and 
speaker recognition;  Gaussian Mixture Model Tokenization 
[6] has been used with the tokens at the frame level for 
language identification. 

Compared with phone level tokenization, GMM tokenizer 
captures another aspect of acoustic and phonetic characteristics 
of a speaker. Since it is constructed at the frame level, GMM 
tokenizer can have more tokens than phone tokenizer from 
limited speech data of one speaker in speaker recognition task. 
In this paper, we will study several aspects of GMM tokenizer 
method, including its token resolution, speaker characteristics 
coverage, front-end construction, backend classifier choice, 
and comparison with phone level tokenization. 

Inspired by the finding in P-PRLM in language 
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cognition where multiple single-language phone recognizers 
 the front-end can enhance the language coverage and 
prove the language recognition accuracy over single phone 

cognizer, we would like to explore multiple GMM tokenizers 
 improve speaker characteristics coverage and to provide 
ore discriminative information for speaker recognition. In 
is paper, we propose using speaker cluster based GMM 
kenizers to serve as the front-end of speaker recognition 
stem. 

GMM tokenizer converts the speech into a sequence of 
MM token symbols which are the indexes of the Gaussian 
mponents scoring highest at every frame in the GMM 
mputation. With these token symbols, we have two choices 
 construct the back-end speaker classifier. One is to use n-
am scoring with n-gram language modeling [7]. It estimates 
gram language model of GMM tokens from the training 
eech of a speaker and apply n-grams likelihood scoring on 
e evaluation speech data. 

Another choice of the back-end classifier is to use the 
ctor space modeling (VSM) method. The amount of speech 
ta for each speaker in speaker recognition is quite limited 
d then the estimated n-gram language model might not be 
bust due to the data sparsity. To alleviate this problem, we 
n use SVM in the vector space [8] as the back-end classifier. 

he vector is created from the sequence of token symbols, and 
ch dimension of the vector represents the statistics of the n-
am unit. We will make a comparison study with these two 
ck-end classifiers. 

The tokenization with phone recognizers and the 
kenization with GMM tokens characterize speaker at 
onetic and spectral levels. We will also carry out the 
periments by using the phone recognizers of seven languages 
 the front-end. We will explore two backend setups, the n-
am scoring method and the VSM method. 

This paper is organized as follows. In section 2, speaker 
cognition with speaker cluster based GMM tokenization and 
ctor space modeling will be described in details. In section 3, 
eaker verification experiments will be established by using 
02 NIST SRE corpus for GMM tokenizers and background 
odeling, and using 2001 NIST SRE corpus as the evaluation 
ta. Finally a discussion will be given in Section 4. 

2. GMM TOKENIZATION WITH SVM 
FOR SPEAKER RECOGNITION 

.1 Vector Space Modeling 

ector space modeling (VSM) has become a standard tool in 
formation Retrieval systems since its introduction decades 
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ago [9]. It uses a vector to represent a text document. One of 
the advantages of this method is that it allows the 
discriminative training of classifier over the high dimensional 
document vectors. We can derive the distance between 
documents easily as long as the vector attributes are well
defined characteristics of the documents. Each coordinate in
the vector reflects the presence of the corresponding attribute. 

In speaker recognition, we can regard a speech segment
from a speaker as a spoken document, and regard the statistics 
of n-gram of the tokens, such as words, phones or GMM 
tokens, as the components in the spoken document vector. For
a speech segment of  tokens , where 1{ ,..., ,..., }T t t t

1 2{ , ,... }Jt w w w

n

 is one of the J tokens, we can establish a 
high-dimensional feature vector where all of its elements are
expressed as the n-gram probability attributes

1 1( | ,... )n np w w w

1 1 1 1( | ,..., )n np t w t w t w . (1)
Its dimensionality is equal to the total number of n-gram 
patterns to highlight the overall behavior of a speaker as:

1 2 1 3 1 2( ),..., ( | ),..., ( | , ),...p w p w w p w w w (2)
The vector space modeling approach evaluates the

goodness of fit, or score function, using vector-based distance, 
such as an inner product:

T

spk spk
P T   (3) 

where spk is a speaker-dependent weight vector of equal 

dimension to , with each component representing the
contribution of its individual n-gram probability to the overall
speaker score.

2.2 Speaker Cluster based GMM Tokenization

Among different token symbols (words, phones and GMM 
tokens), GMM tokenization provides an unsupervised training 
method to construct the tokenizer. The model training does not 
require the phonetic transcription of speech data. Since GMM 
tokenization works at frame level, it can provide more tokens 
than those tokenizers at word and phone levels, and then might 
alleviate the data sparsity problem in speaker recognition
where there is only limited speech data available for the
training and testing from one speaker. 

P-PRLM [5] has proved to outperform single phone 
recognizer by using multiple single language phone 
recognizers in language identification. A set of parallel GMM 
tokenizers, each of which is trained for one of 12 languages 
[6], have also been used to enhance the language coverage and
then to improve the language identification accuracy where n-
gram scoring is used in the back-end classifier. 

In speaker recognition, we assume that speakers can be 
grouped according to their spectral characteristics, for 
example, by speaker gender. By clustering all the speakers in 
the training set into several speaker clusters, we can partition
the training space in a flexible data-driven manner. Each
partition of speech data can then be used to train a GMM
tokenizer. After the multiple GMM tokenizers are constructed,
a speech segment passes through all these tokenizers to be 
converted into multiple feature vectors as shown in (1) and (2).
These feature vectors will be concatenated into one single 
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mposite feature vector to represent the speech segment. The
tailed implementation of the GMM tokenization is shown as 
llows:

eaker Clustering for GMM Tokenizer Modeling

Train a Universal Background Model (UBM) with M mixture 
of Gaussian components by using the speech data from N
speakers;
Convert the speech data of each speaker into a spoken 
document vector as shown in (1) and (2) by using the above 
obtained UBM; 
Cluster these N speakers into C speaker clusters with k-
means algorithm by using the spoken document vectors, and
split the whole training data set into C partitions accordingly.
Train a cluster-dependent GMM by using the speech data
from each of C speaker clusters. Acoustic adaptation
algorithm can be used to obtain the GMMs based on the
UBM.

oken Document Vector from Multi-GMM Tokenization

For each of speech segments, C parallel recognitions are
made by using the C cluster-dependent GMM models and C
GMM token sequences are obtained; 
These C GMM token sequences are converted into C feature 
vectors as shown in (1) and (2). In this paper, we only use 
unigram and bigram patterns to represent the speaker
characteristics;
Concatenate the C feature vectors into one single composite 
feature vector to represent the speech segment.

With the multiple GMM token sequences from C GMM 
kenizers, there are two choices to make the classification
cision. One is to use the n-gram scoring to combine the
ores from n-gram likelihood of GMM tokens [7]. Another 
oice is to use the vector space modeling approach [8] with 
e n-gram probability as the value of each dimension in the 
ature vector and with SVM as the classifier.

.3 N-gram Scoring

or a single GMM tokenizer case, the n-gram likelihood scores 
om the hypothesized speaker model and the Universal
ackground Phone Model (UBMP) [7] can be combined to 
rm the recognition score i by using the following log-

kelihood ratio formula:
( ( )[ ( ) ( )])

( )
k n S n B nn i

i k nn
(4)

here n is the index of n-gram GMM tokens, represents

e log-likelihood score from the i-th hypothesized speaker
odel,  is the log-likelihood score from the UBPM, and

 is the weighting function based on the number of
currences of a particular n-gram GMM token. 

( )S ni

( )B n
( )n

The score fusion from multiple GMM tokenizers can be
ade by summing all the C scores from C GMM tokenizers as 
e following formula:



,
1

C
i c

c
c i   (5) 

where c are the speaker cluster dependent weights.

2.4 Support Vector Machine (SVM)

The spoken document vector is high dimensional in nature 
where high order n-gram patterns are included. SVM is
optimized on a structural risk minimization principle [10] and
is a classifier of natural choice here because the feature vectors
are sparse and do not follow a specific distribution. Because of 
its distribution-free property, SVM is suitable for designing
vector-based classifiers.

Figure 1 shows the framework how a single high 
dimensional feature vector is constructed for a speech segment.
Instead of using the score fusion from multiple SVMs as in [8],
we create one feature vector from each of the GMM token 
sequences and concatenate these feature vectors into a single
composite feature vector. A single SVM classifier is used to 
output the score in (3) for the speaker recognition.

By using a single composite feature vector, we can avoid
the trouble of summing the scores of multiple SVMs while the 
score range from the SVMs might vary largely due to the
different range of distances between the feature vectors and the
separating hyperplanes. A single composite feature vector can
help to solve this problem by using a unique decision
hyperplane.

Figure 1: Speaker cluster based multiple GMM tokenizers

Log-likelihood ratio weighting scheme at each dimension
of the feature vector as in [8] is adopted for term weighting of 
the SVM kernel construction. It makes a log of likelihood ratio 
normalization based on the n-gram likelihood values of
background training data.

2.5 Phone Tokenization & GMM Tokenization

Both phone tokenization and GMM tokenization reflect the
differences among speakers, in the dynamic realization of
acoustic and phonetic characteristics, to pronounce the same 
sequence of sounds. In this way, they discriminate one speaker
from another. Phone tokenization emphasizes on the phonetic-
phonotactic information of the speaker while GMM 
tokenization puts emphasizes on the acoustic-spectral 
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aracteristics of the speaker. We examine both of them in this
per.

3. EXPERIMENTS

 the following experiments, we will examine several issues
 GMM tokenization method, including the size of GMM 

aussian mixtures, speaker clustering for multiple GMM 
kenizers, comparison of n-gram scoring method and vector
ace modeling method for the classifier design, and the
mparison of phone tokenization and GMM tokenization.

.1 Speech Corpora 

e use the 2002 NIST SRE corpus for the training of the 
ckground model and speaker cluster based GMM tokenizers.
e use the 2001 NIST SRE corpus for the evaluation. In 2001
IST SRE corpus, the evaluation data is divided into 
aluation training data and evaluation test data. The training
ta consists of 174 speech files that are two minutes long. The
st data comprises 2,038 speech files of varying lengths not
ceeding sixty seconds.

.2 Gaussian Mixture Size and Speaker Clustering 

he selection of Gaussian mixture size is a compromise
tween the amount of training data and resolution of GMM 
odeling ability. By using the 2002 NIST SRE corpus as the 
ckground modeling training data, one single GMM tokenizer

 built. The performance comparison with the GMM
kenizers of different Gaussian mixture sizes on the 2001 
IST SRE data is shown in the Table 1. We find that 128
ixtures well describe the feature space. 

Table 1: Performance comparison of different Gaussian
mixture size with a single GMM tokenizer

Mixture
Number 32 64 128 256

EER (%) 20.6 19.2 18.8 19.1

12
13
14
15
16
17
18
19
20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of GMM tokenizers

Eq
ua

lE
rr

or
 R

at
e 

(%
)

Figure 2: Performance comparison with different number of 
GMM tokenizers at Gaussian mixture size as 128 



Figure 2 shows the performance as a function of the
number of GMM tokenizers, each having 128 Gaussian
mixtures. The speech data of each speaker in the 2002 NIST
SRE is converted into a feature vector with unigram only. By
using vector quantization algorithm, the speakers in the 2002
NIST SRE are clustered into certain number of clusters 
accordingly to the speaker characteristics. The speech data
from each of the speaker clusters is used to train a GMM
tokenizer. We can see from Figure 2 that, when more GMM 
tokenizers are available and then more detailed acoustic and
phonetic characteristics are provided, the equal error rate
(EER%) of speaker recognition is reduced.

3.3 Front-end Tokens and Back-end Classifiers

In this section, we will examine four combinations of front-
ends and back-ends by the experiments. The two front-ends are 
multiple phone tokenizers and multiple GMM tokenizers. For 
the phone tokenization, we make the parallel phone
recognizers (PPR) of seven languages, English, Korean, 
Mandarin, Japanese, Hindi, Spanish and German [11]. For the
GMM tokenization, 15 parallel GMM tokenizers shown in
Figure 2 with 128 Gaussian mixture components are used to 
create the GMM token sequences.

The two back-end classifiers are the n-gram scoring and 
the vector space modeling with SVM on the concatenated
feature vector. Figure 3 shows the DET curves of the four 
combinations, phone-NGram, phone-VSM, GMM-NGram and
GMM-VSM.

The combination of GMM tokenization and vector space 
modeling (GMM-VSM) achieves the best results in the 2001 
NIST SRE corpus among the four systems.

Figure 3: Performance comparison with four combinations of 
front-ends and back-ends.

4. DISCUSSION 

In this paper, we present a speaker recognition system with
speaker-clustering based GMM tokenization as the front-end,
and with vector space modeling as the back-end classifier.
GMM tokenizer does not need the transcribed speech data for 
model training, and it can provide more tokens at the frame
level to alleviate the data sparsity problem in speaker
recognition task. By using speaker cluster based GMM 
tokenization, we can find a flexible way to prepare multiple
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MM tokenizers to provide better speaker characteristics
verage that discriminates speakers. By using the vector
ace modeling method as the back-end classifier, a speech
gment is converted into a feature vector with the statistics of
MM token n-grams as the components. We concatenate
ultiple feature vectors into a single composite feature vector,
d use a single SVM classifier to output the score for speaker
cognition. This can avoid the trouble of combining the 
ores of multiple SVMs, which typically have different score
nges.

The tokenization method provides useful information for
eaker recognition, but it only reflects one aspect of speaker
formation. The further benefit can be achieved by combining
e tokenization method with other modeling methods on
ectral/prosodic features.
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