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Abstract

Further improvement in performance, to achieve near transparent
quality LSF quantization, is shown to be possible by using a higher
order two dimensional (2-D) prediction in the coefficient domain.
The prediction is performed in a closed-loop manner so that the
LSF reconstruction error is the same as the quantization error of
the prediction residual. We show that an optimum 2-D predictor,
exploiting both inter-frame and intra-frame correlations, performs
better than existing predictive methods. Computationally efficient
split vector quantization technique is used to implement the pro-
posed 2-D prediction based method. We show further improve-
ment in performance by using weighted Euclidean distance.
Index Terms : LSF Quantization, Predictive Methods.

1. Introduction
On going speech coding research has been pushing bit-rates further
downward and thus there is a requirement of finding more efficient
LPC parameter quantization technique. Among many representa-
tions of LPC, line spectrum frequency (LSF) parameters are well
suited for quantization [5]. Since the full search vector quantiza-
tion (VQ) is complexity limited, various structured VQ methods
have been proposed in the past to encode the LSF parameters. One
of the most cited and practically used techniques is split VQ (SVQ)
[5]. A three sub-vector SVQ technique is used in different coders,
such as IS-136, G.723.1 etc. [12].

Since speech spectra are slowly time-varying, the LSF pa-
rameters show a significant inter-frame correlation between suc-
cessive frames. To exploit this, several predictive schemes have
been proposed in the past ([2], [6], [8], [9]). We refer to these
methods as inter-frame correlation based predictive methods (1-D
methods). In addition to the inter-frame correlation, there exists
a strong intra-frame correlation [3] between the LSF components
of a particular frame. Therefore, the predictive methods can ex-
ploit both the inter-frame and intra-frame correlations simultane-
ously. Hence, 2-D prediction method is proposed in [4] and fur-
ther explored in ([7], [11]). The 2-D method uses both the LSFs
of the previous frames and some of the LSFs of the current frame
to remove the linear redundancy. Another approach to linear re-
dundancy removal is through a de-correlating transform, such as
applying DCT [3]. Hence intra-frame redundancy can be reduced
through the DCT of LSF vector. A similar approach for inter-frame
redundancy removal will require large coding delay, which may
not be acceptable. Hence, one has to explore a hybrid of transform
domain inter-frame prediction [3].

In using VQ for LSF, there is also the issue of complexity,
for which sub-optimum SVQ has been widely used. However, the
1-D and 2-D prediction schemes use quantized priors and hence
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limited complexity, it is worth to explore the effectiveness of
lying SVQ technique in different predictive schemes as well
n hybrid predictive scheme. Towards this, we have found as
mum order 2-D prediction scheme (combined inter-frame and
a-frame) which outperforms the 1-D, 2-D prediction schemes,
ell as hybrid transform domain prediction scheme. The opti-

2-D predictor provides nearly 3 bit performance advantage
r the regular SVQ scheme.

2. Predictive LSF quantization
the nth frame 10th dimensional LSF vector be ω(n) =

(n) ω2(n) ... ω10(n)]T . The earliest of predictive scheme
LSF is the vector LP [2], in which ω(n) is predicted as
) = A ω̂(n−1); where A is 10×10 prediction matrix. Later,

s simplified to a diagonal matrix (pp. 504 of [9]), leading to
n) = aiω̂i(n−1), 1 ≤ i ≤ 10, resulting in the 1-D predictor.
refer this method using SVQ technique as 1-D predictive SVQ
hod (1DPSVQ).
The 2-D predictor [4] uses both inter-frame and intra-frame
ponents for joint prediction as: ω̃i(n) = biω̂i(n − 1) +

i−1(n), 1 ≤ i ≤ 10. Because of the joint prediction, it is
ected to provide better prediction gain than pure 1-D predictor
nly inter-frame prediction. This method, using SVQ technique,
ferred as 2-D predictive SVQ method (2DPSVQ).
The intra-frame redundancy can also be removed through lin-
transforms, such as applying DCT [3] or KLT [10] on LSF vec-
i.e. using u(n) = D ω(n), where D is a 10×10 DCT or KLT
rix. The de-correlating transform removes the intra-frame re-
dancy and hence intra-frame prediction can be avoided. There-
, the hybrid predictive scheme uses the prediction in the trans-
ed domain as: ũi(n) = hiûi(n − 1), 1 ≤ i ≤ 10. We refer

method, using SVQ technique, as transform domain 1DPSVQ
hod (T1DPSVQ).

3. Optimum 2-D predictor
eneral 2-D predictor, using the past coded coefficients to pre-
the current coefficients, can be expressed as:

ω̃(n) =
MX

k=1

Ak ω̂(n − k) + B ω̂(n) (1)

re Aks are the prediction matrices associated with past coded
es’ LSF vectors (exploiting inter-frame correlation) and B is

matrix associated with the current frame LSF vector (exploit-
intra-frame correlation). This B matrix is a constrained lower
gular matrix with main diagonal elements as zeros to achieve

causality relation of the predictor formulation. So, ωi(n) can
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Table 1: Open loop performance using different predictive meth-
ods with different orders
Scheme Coefficients used Model Avg. Gp Further

to predict ωi(n) order, p Improvement

1-D Predictive Methods
1 ωi(n − 1) 1 3.19 -
2 ωi(n − 1), ωi(n − 2) 2 3.23 no
3 ωi−1(n − 1), ωi(n − 1) 3 3.49 minor

and ωi+1(n − 1)

2-D Predictive Methods
4 ωi(n − 1), ωi−1(n) 2 4.69 major
5 ωi(n − 1), ωi+1(n − 1) 3 4.98 minor

and ωi−1(n)
6 ωi(n − 1), ωi−1(n − 1) 3 5.50 major

and ωi−1(n)
7 ωi−1(n − 1), ωi(n − 1) 4 5.67 minor

ωi+1(n − 1) and ωi−1(n)
8 ωi−1(n − 1), ωi(n − 1), 5 5.68 no

ωi+1(n − 1), ωi−1(n)
and ωi−2(n)

9 ωi−2(n − 1), ωi−1(n − 1), 6 5.71 no
ωi(n − 1), ωi+1(n − 1),
ωi+2(n − 1) and ωi−1(n)

be predicted using past coded components of the same nth frame,
i.e. {ωi−k(n)}i−1

k=1
, in addition to the past coded components of

the previous frames. Since a first order inter-frame predictor is suf-
ficient [9] to exploit the inter-frame correlation, Eqn. 1 is modified
as:

ω̃(n) = A1 ω̂(n − 1) + B ω̂(n) (2)

An optimum solution of the prediction matrices in Eqn. 2, with
the condition that of B is possessing a special constrained struc-
ture, is mathematically intractable. However, treating the vector
sequence in a 2-D plane, we can form a causal nearest neighbor
scalar predictor formulation. We find experimentally the optimum
2-D predictor as:

ω̃i(n) = diω̂i−1(n − 1) + eiω̂i(n − 1) + fiω̂i+1(n − 1)

+giω̂i−1(n), 1 ≤ i ≤ 10 (3)

where di, ei, fi and gi are the prediction coefficients. The bound-
ary values are fixed as: ω̂0(n) = ω̂0(n − 1) = 0.005 and
ω̂11(n) = π. We call this new 2-D prediction scheme, using SVQ
technique, as optimum PSVQ method (OPSVQ).

Without any quantization, we first study the open loop1 per-
formance gain improvements achieved by different predictors. A
training data of 5,000 frames is used to find the corresponding op-
timum prediction coefficients2 for each of the methods and 5,579
frames of “out of training” data is used for testing3. Table 1 shows

1Open loop is used to de-link the prediction from the performance of
the quantizer.

2These 5,000 frames are always used to find the corresponding predic-
tion coefficients of all the prediction based methods for all the experiments
carried out. Increasing the number of training vectors to find the optimum
prediction coefficients did not yield any tangible prediction gain improve-
ment.

3Speech frames are 20 ms Hamming windowed with no successive
overlap.
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Scheme−1 Scheme−3

i i

(a)  1−D Prediction Methods

Scheme−4 Scheme−5

Scheme−6 Scheme−7

(b)  2−D Prediction Methods

Past samples with optimum performance and no additional
coding delay.

Past samples with mild improvement, not commensurate
with the higher complexity.

Current sample: i th LSF component of the n th frame.

re 1: LSF coefficient prediction neighborhood for some of the
mes shown in Table 1. (a) 1-D prediction methods, (b) 2-D
iction methods. Here ’n’ is the frame index and ’i’ is the LSF

fficient index.

le 2: Open loop prediction gains (Gp in dB) of different
mes for each LSF coefficient
ethod LSF coefficient Avg. Gp

1 2 3 4 5 6 7 8 9 10
heme-1 2.2 2.1 2.5 3.8 4.9 4.4 4.3 3.9 2.2 1.3 3.1
heme-4 2.2 2.7 4.5 5.3 6.0 6.3 5.6 6.2 3.1 4.6 4.6
heme-7 2.8 3.7 5.2 6.3 6.6 7.4 6.3 7.5 3.8 6.5 5.6

average prediction gain (Avg. Gp in dB) performance of dif-
nt methods. Some of these schemes are elucidated in Fig. 1.
observations from Table 1 are:
(a) All 2-D methods are better than 1-D methods, indicating
advantage of jointly exploiting inter-frame and intra-frame cor-
tions.
(b) Among the 1-D predictors, the marginal improvements are
ntially due to increase of the model order and thus scheme-1
fficient for 1-D prediction as reported in [9].
(c) Among the 2-D predictors there is 1 dB average gain im-
ement from model order p = 2 to p = 6. Also, we note that
2 in 2-D is much better than p = 3 in 1-D.
(d) It is clear that p = 4 in 2-D methods provides most of the
iction gain improvement and there is no need for the higher
plexity of p = 5 and p = 6; hence this combination (scheme-
s chosen to represent an optimum 2-D predictor as OPSVQ,
racterized by Eqn. 3.
We further investigate the open loop prediction gains of differ-
LSF components for three main schemes, which are shown in
le 2. It is observed that scheme-4 performs better than scheme-
ut, scheme-7 provides higher prediction gains for each of the
coefficients throughout the whole frequency region compared

cheme-4 and scheme-1. Therefore, it is expected that, OPSVQ,
esponding to scheme-7, will show better performance.



Table 3: Performance of different quantization methods (in dB)
using Euclidean distance

Method Avg. Outliers (in %) RMS Avg. Outliers (in %) RMS
SD 2-4 dB >4 dB SDM SD 2-4 dB >4 dB SDM

22 bits/frame 23 bits/frame
SVQ 1.46 12.36 0.30 1.45 1.38 8.37 0.14 1.37

1DPSVQ 1.37 12.51 0.17 1.43 1.28 9.26 0.16 1.34
T1DPSVQ 1.33 9.49 0.21 1.36 1.23 7.08 0.34 1.30
2DPSVQ 1.33 8.87 0.14 1.38 1.24 6.27 0.17 1.29
OPSVQ 1.25 7.00 0.23 1.31 1.17 4.94 0.17 1.22

24 bits/frame 25 bits/frame
SVQ 1.30 6.63 0.14 1.30 1.21 4.92 0.10 1.22

1DPSVQ 1.19 7.11 0.14 1.26 1.12 5.62 0.05 1.20
T1DPSVQ 1.18 5.87 0.21 1.24 1.12 4.83 0.12 1.17
2DPSVQ 1.16 4.83 0.08 1.20 1.09 3.54 0.05 1.13
OPSVQ 1.08 3.99 0.14 1.14 1.02 3.29 0.07 1.08

26 bits/frame 27 bits/frame
SVQ 1.13 3.54 0.01 1.15 1.07 2.79 0.01 1.09

1DPSVQ 1.05 4.10 0.05 1.12 0.98 3.38 0.05 1.06
T1DPSVQ 1.03 3.20 0.07 1.09 1.00 3.02 0.05 1.06
2DPSVQ 1.02 2.56 0.03 1.06 0.95 2.11 0.03 1.01
OPSVQ 0.95 2.36 0.05 1.01 0.89 1.95 0.01 0.95

4. Quantization results
To measure the LSF quantization performance, we use the tradi-
tional measure of Spectral Distortion (SD) [5] . We also use a
perceptually relevant dynamic distortion measure of Spectral Dis-
tortion with Interframe Memory (SDM), recently proposed in [13].
The conditions for transparent quality LPC parameter quantization
([5], [13]) are: (1) the average SD is around 1 dB (2) no outlier
frame ‘> 4 dB’ of SD (3) < 2% of outlier frames are with in the
range of 2-4 dB of SD and (4) an rms SDM is around 1 dB.

The speech data used in the experiments is from the TIMIT
data base. The speech is first low pass filtered to 3.4 kHz and
then down sampled to 8 kHz. A 10th order LPC analysis with
20 ms Hamming windowed analysis frame is used, based on Burg
method, with no successive frame overlap. In order to avoid sharp
spectral peaks in the LPC spectrum a fixed 10-Hz bandwidth ex-
pansion is applied as in [5]. In the experiments 71,707 LSF vectors
are used for training and “out of training” 5,579 frames are used
for testing.

We study comparative quantization performance of proposed
OPSVQ over 1DPSVQ, T1DPSVQ, 2DPSVQ and memory-less
regular SVQ methods. In all the methods, we have used three
split arrangement of the 10 dimensional vector. We use 3-3-4 split
segmentation for SVQ, 1DPSVQ, 2DPSVQ and OPSVQ methods.
Since the DCT packs most energy into lower-index coefficients,
the DCT residual vectors are split using 2-3-5 segmentation for the
case of T1DPSVQ. In all the methods, the codebooks are designed
using the LBG algorithm4 [1]. The results of different methods
using Euclidean distance (ED) are reported in Table 3.

We observe from Table 3 that the proposed OPSVQ shows bet-
ter performance in all the respects than the other methods. In most
of the cases, 1DPSVQ reduces average SD compared to SVQ,
but fails to reduce the outliers. Also 1DPSVQ fails to show con-

4The bit allocation to sub-vectors is nearly uniform to keep the search
complexity minimal [5]. If 21 bits are available for the full vector, then 7
bits are allocated to each sub-vector. If 22 bits are available, then 1 bit is
allocated to that sub-vector which results in least quantization distortion.
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le 4: Performance of different quantization methods (in dB)
g weighted Euclidean distance

ethod Avg. Outliers (in %) RMS Avg. Outliers (in %) RMS
SD 2-4 dB >4 dB SDM SD 2-4 dB >4 dB SDM

22 bits/frame 23 bits/frame
VQ 1.41 9.49 0.19 1.39 1.33 6.38 0.07 1.32
PSVQ 1.32 10.27 0.19 1.38 1.23 8.08 0.14 1.29
PSVQ 1.27 6.29 0.14 1.31 1.19 4.71 0.12 1.23
SVQ 1.20 5.25 0.16 1.25 1.12 4.08 0.10 1.17

24 bits/frame 25 bits/frame
VQ 1.25 4.82 0.07 1.25 1.17 3.47 0.03 1.17
PSVQ 1.14 6.07 0.10 1.21 1.08 4.51 0.07 1.15
PSVQ 1.11 3.33 0.10 1.15 1.04 2.11 0.05 1.08
SVQ 1.04 2.74 0.07 1.09 0.97 1.81 0.05 1.03

26 bits/frame 27 bits/frame
VQ 1.09 2.36 0.00 1.10 1.03 1.77 0.00 1.05
PSVQ 1.00 3.29 0.03 1.07 0.94 2.74 0.03 1.01
PSVQ 0.97 1.59 0.01 1.01 0.90 1.23 0.00 0.95
SVQ 0.91 1.48 0.03 0.96 0.85 1.20 0.00 0.90

rable improvement in the sense of rms SDM measure. But
VQ not only reduces average SD, but also the percentage of

iers as well as rms SDM compared to all other methods. It
bserved that in the sense of only average SD, 1DPSVQ saves
rly 1 bit from the SVQ. T1DPSVQ shows either comparable or
ginal improvement in performance over 1DPSVQ. 2DPSVQ
hod performs better than the 1DPSVQ and T1DPSVQ and thus
ifies the importance of exploiting intra-frame correlation. But,
OPSVQ saves another 1 bit compared to its close contender
SVQ, both in terms of average SD and rms SDM measures.
In the context of LSF quantization, it is common to use
ghted Euclidean distance (WED) to search the VQ codebook
, [10]). For the nth frame, WED is:

d(ω, ω̂) = (ω − ω̂)T
Σ(ω − ω̂) =

10X
i=1

σi(ωi − ω̂i)
2 (4)

re Σ is a diagonal sensitivity matrix whose diagonal elements,
}, are the necessary weights [10]. Let D denotes the DCT
rix. The transformed coefficients can be expressed as u =
; the inverse transform is given by ω = D−1 u. Then the

ance measure with respect to transformed coefficients can be
ten as:

d(u, û) = (u − û)T (D−1)T
Σ D

−1(u − û) (5)

qn. 5, the weighting matrix is (D−1)T Σ D−1 and it is not
onal. Therefore, the weighted distance measure, character-
by Eqn. 5, is not easily amenable to apply for transformed

ain sub-vectors using SVQ technique in T1DPSVQ method.
the other hand, WED, characterized by Eqn. 4, can be easily
lied to all other methods except T1DPSVQ, using SVQ tech-
e. Hence, further improvement of T1DPSVQ using WED
sure is not explored. For the other methods, we have used
D where the weights are Modified Inverse Harmonic Mean
ght (MIHMW) [16]. The results of different methods using
D are shown in Table 4.
It is observed that use of WED improves the performance in
le 4 compared to Table 3. OPSVQ always performs better than
other methods and provides near transparent quality quantiza-
performance at 25 bits/frame according to the requirements



discussed earlier. Therefore, the OPSVQ method should be con-
sidered as a potential candidate for LSF quantization. It is noted
that all the methods use nearly same memory; but predictive meth-
ods need higher computational complexity compared to memory-
less method. OPSVQ results in maximum complexity among the
predictive methods.

5. Conclusions
We observe that, an optimum two dimensional predictive method,
exploiting both the inter-frame and intra-frame correlations of LSF
parameters, outperforms the commonly used one dimensional pre-
dictive method which only exploits inter-frame correlation. It is
noticed that a transform domain predictive approach, i.e. remov-
ing the intra-frame correlation of LSF parameters by a transform
and then applying inter-frame prediction, is not providing a con-
siderable improvement. A point to be noted that SVQ is inferior
to unconstrained full-vector quantization, due to the independent
treatment of sub-vectors [14]. But, 2-D predictor tries to mitigate
this loss through intra-frame prediction and thus provides better
quantization performance. Future work includes to explore the
performance of switched 2-D predictor with channel noise robust-
ness issues and sensitivity of bit errors.

6. Appendix
In searching the optimal residual code vector, WED is used where
{σi} are the MIHMW weights. If σi = 1, then the distance
measure becomes an Euclidean distance (ED) measure. Let q

dimensional pth sub-vector of nth frame LSF vector ω(n) is,
ωp(n) = [ωp,1(n) ωp,2(n) . . . ωp,q(n)]T ; Xp and Yp be two pth
sub-vector error codebooks of size 2Bp with index sets Kp and Lp

respectively for 1DPSVQ and OPSVQ.
(a) Encoding of 1DPSVQ: Using the equation ω̃i(n) = aiω̂i(n −
1),

∀j ∈ Kp, ω̂
j
p,i(n) = ap,iω̂p,i(n − 1) + x

j
p,i; 1 ≤ i ≤ q (6)

where xj
p = [xj

p,1 x
j
p,2 . . . xj

p,q] is the jth residual code vector
in 1DPSVQ error codebook Xp. Then the optimum codeword j∗p
can be found by exhaustive codebook search,

j
∗

p = arg min
j∈Kp

(
qX

i=1

σp,i[ωp,i(n) − ω̂
j
p,i(n)]2

)
(7)

(b) Encoding of OPSVQ: The encoding algorithm is based on [4],
which is modified and used. Given the encoded value of ω̂p,0(n),
ω̂p,0(n − 1) and ω̂p,q+1(n − 1) and using Eqn. 3,

∀j ∈ Lp, ω̂
j
p,i(n) = dp,iω̂p,i−1(n − 1) + ep,iω̂p,i(n − 1)

+fp,iω̂p,i+1(n − 1) + gp,iω̂
j
p,i−1(n) + y

j
p,i; 1 ≤ i ≤ q (8)

where yj
p = [yj

p,1 y
j
p,2 . . . yj

p,q] is the jth code vector in OPSVQ
error codebook Yp. Then the optimum codeword j∗p can be found
by the same way as in Eqn. 7, but using codebook Yp with index
set Lp.

For more details on this encoding algorithm, the reader is
referred to [15]. The same encoding algorithmic structure of
OPSVQ is used for 2DPSVQ method using equation ω̃i(n) =
biω̂i(n − 1) + ciω̂i−1(n) in lieu of Eqn. 3 and searching the cor-
responding codebook.
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