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Abstract
In this paper we propose a novel Voice Activity Detection (VAD)
algorithm, based on the integrated bispectrum function (IBI), for
improving Automated Speech Recognition (ASR) systems that
work in noisy environments. In particular we use the combina-
tion of two features, IBI magnitude and IBI phase to formulate
a robust and smoothed decision rule for speech/pause discrimina-
tion. The analysis performed on the new combined feature high-
lighted: i) the advantages of each individual feature, while com-
pensating the drawback of each other, and ii) the higher ability for
endpoint detection given by a lower variance of the decision func-
tion in pause/speech frames. The experiments conducted on the
Spanish SpeechDat-Car database showed that the proposed algo-
rithm outperforms ITU G.729, ETSI AMR1 and AMR2 and ETSI
AFE standards as well as other recently reported VAD methods in
speech/non-speech detection performance.

Index Terms: voice activity detection, clustering analysis, bispec-
trum function, entropy.

1. Introduction
Voice Activity Detectors (VAD) have been applied successfully to
numerous applications of speech technologies (particularly in mo-
bile communications, robust speech recognition or digital hearing
aid devices), in combination with a noise reduction scheme [1].
During the last decade numerous researchers have studied differ-
ent strategies for detecting speech in noise and the influence of the
VAD decision on speech processing systems [2, 3, 4, 5].

Most of the algorithms for detecting the presence of speech
in a noisy signal only exploit the power spectral content of the
signals and require knowledge of the noise power spectral density
[3, 5, 6, 7]. One of the most important disadvantages of these ap-
proaches is that no a priori information about the statistical prop-
erties of the signals is used. Higher order statistics methods rely on
an a priori knowledge of the input processes and has been consid-
ered for VAD since they can distinguish between Gaussian signals
(which has a vanishing bispectrum) from non-Gaussian signals.
However, the main limitations of bispectrum-based techniques are
that they are computationally expensive and the variance of the
bispectrum estimators is much higher than that of power spectral
estimators for identical data record size [8]. These problems were
addressed in [9], where a computationally efficient and reduced
variance statistical test, based on the magnitude of the IBI, for de-
tecting speech periods was shown. On the other hand, the com-
plexity of the proposed VADs can be additionally improved using
clustering analysis on the noise subspace of subband energies [10],
achieving efficient VADs for real time applications. This paper ad-
vances in the field and shows an effective VAD based on the com-
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tion of two features (bispectrum magnitude and phase) and
clustering techniques for voice activity detection. The pro-
d approach also incorporates contextual information to the
sion rule, a strategy first proposed in [11] that has reported
ificant benefits, particularly, in robust speech recognition ap-
tions [12, 13]. The paper includes a carefully derivation of

decision rule based on the two features: subband bispectrum
nitude clustering, and bispectrum phase entropy.

2. Noise subspace clustering applied to
bispectrum magnitude

tering analysis is useful tool in VAD to model the noise sub-
e in terms of a set of prototypes of energy subbands [10]. The
e prototypes, which are obtained from the minimizing process
e cost function (mean squared error) over a set of initial pause
re vectors, give a smoothed and low dimensional representa-
of the noise subspace. The presence of the cluster “speech”
tected by means of a Euclidean distance between the mean of
rototype subband energies and the current feature. In this sec-
we define the set of prototypes in terms of the IBI magnitude
e they have shown an special ability in VAD [13, 9]. Let x(n)
discrete time signal and s(n) = x2(n) − E[x2(n)]. Denote

n′ the ensemble average of the product samples:

τ) = {E[x(n+τ)·s(n)]} = {E[x(i+n′·D+τ)·s(i+n′·D)]};
(1)

re i = 0 . . . L − 1, τ is the correlation lag, D is the window
, L is the number of samples in each frame and n′ selects
rtain data window. Consider the set of 2 · m + 1 averages

m, . . . yl . . . , yl+m} centered on average yl, and denote by
, n′), n′ = l − m, . . . l . . . , l + m its Discrete Fourier Trans-
(DFT) resp., that is, the IBI of x(n) [14]:

′(ωs) ≡ Y (s, n′) =

NF F T −1∑
τ=0

yn′(τ) · exp (−j · τ · ωs) . (2)

re ωs = 2π·s
NF F T

, 0 ≤ s ≤ NFFT − 1, NFFT is DFT resolu-

, j denotes the imaginary unit and yn′(τ) is the n′-th compo-
of the vector yτ

n′ . The averaged IBI “energies” for each n′-th
e, E(k, n′), in K subbands (k = 1, 2, ..., K), are computed
eans of:

E(k, n′) =

[
2K

NF F T

sk+1−1∑
s=sk

|Y (s, n′)|2
]

sk =
⌊

NF F T
2K

(k − 1)
⌋

k = 1, 2, ..., K

(3)
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where an equally spaced subband assignment is used and �·� de-
notes the “floor” function. Hence, the IBI magnitude is averaged
over K subbands obtaining a suitable representation of the input
signal for VAD [12], the observation vector at each frame n′, de-
fined as:

E(n′) = (E(1, n′), . . . , E(K, n′))T ∈ R
K

(4)

Once the feature vector is defined, the noise model is obtained
by minimizing the dissimilarity measure, based on the squared
Euclidean distance:

d(Ej ,Ej′) =

K∑
k=1

(E(k, j) − E(k, j′))2 = ||Ej − Ej′ ||2 (5)

over a set of N initial pause feature vectors, which can be defined
as:

J(C) = 1
2

∑C
i=1

∑
C(j)=i

∑
C(j′)=i ||Ej − Ej′ ||2

= 1
2

∑C
i=1

∑
C(j)=i ||Ej − Ēi||2 (6)

where C(j) = i denotes a many-to-one mapping, that assigns the
j-th observation to the i-th prototype and

Ēi = (Ē(1, i), . . . , Ē(K, i))T = mean(Ej);
∀j, C(j) = i, i = 1, . . . , C

(7)

is the mean vector associated with the i-th prototype. Thus, the
loss function is minimized by assigning N observations to C pro-
totypes in such a way that within each prototype the average dis-
similarity of the observations is minimized. Once convergence is
reached, N K-dimensional pause frames are efficiently modeled
by C K-dimensional noise prototype vectors denoted by Ēopt

i ,
i = 1, . . . , C . The presence of the second “cluster” (speech frame)
is detected if the following ratio holds:

η(l) = log

[
1/K

K∑
k=1

Ê(k, l)

< Ēi > (k)

]
> γ (8)

where < Ēi >= 1/C
∑C

i=1 Ēi = 1/C
∑C

i=1 1/Ni

∑N
j=1 γijEj

is the averaged noise prototype center, Ê(k, l) =
max{E(j)}, j = l − m, . . . , l + m and γ is the deci-
sion threshold. As it is shown in equation 8, the VAD decision
rule is formulated over a sliding window consisting of 2m+1
observation (feature) vectors around the frame for which the
decision is being made (l). This strategy, known as “long
term information”[8], provides very good results using several
approaches for VAD, however it imposes an m-frame delay on the
algorithm that, for several applications including robust speech
recognition, is not a serious implementation obstacle.

3. A new discriminative feature: bispectrum
phase entropy

The entropy, a measure of amount of expected information, is
broadly used in the field of coding theory. In [15] it is used in com-
bination with energy for endpoint detection showing that voiced
spectral entropy is quite different from non-voiced one.

Shannon’s entropy HS , measures the average length of bi-
nary word per symbol under optimal coding for some information
source S and it is defined:

HS = −
M∑

k=1

P [sk] log2 (P [sk]) , (9)
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re S = [s1, . . . , sk, . . . , sM ] represents the information
ce with M symbols and P [sk] is the probability of emission of
bols i. This causes minimum entropy to occur when one sym-
has an emission probability 1 and other symbols have emis-
probability 0. Respectively, maximum entropy occurs when

he symbols have same probability, i.e., sk = 1/M for all i.

sidering the normalized IBI phase Ŷ (s, n′) of the frame n′

probability distribution, the entropy in the phase domain can
omputed by substituting the symbol probabilities P [sk] with
ability of the sth frequency band given by:

P
[

Ŷ (s, n′)
]

=
|Ŷ (s, n′)|∑
s |Ŷ (s, n′)|

, (10)

lting the IBI phase entropy at frame n′:

̂Y (n′) = −
∑

k

P
[
|Ŷ (s, n′)|

]
log2 P

[
|Ŷ (s, n′)|

]
. (11)

ming that phase vectors are independent over the sliding win-
, then the overall IBI phase entropy is given by:

H
̂Y =
∑
n′

H
̂Y (n′) (12)

This new feature is used in combination with equation 8 by
tiplication as in [15]. It works because both “energy” and en-
y has their limitations. The blind spots in either “energy” or
opy, or both, can be canceled by the multiplication (in our case
ivision). In other words, energy covers the case that was failed
ntropy: babble and background music in speaker utterance;
reas the entropy covers the case that was failed in energy: non-
onary noise which belongs to mechanical sounds [15].

4. Remarks
1 shows the operation of the proposed algorithm the IBI-Phase
opy (IBI-P Entropy) VAD, on an utterance of the Spanish
chDat-Car (SDC) database [16]. The phonetic transcription
“sjete”, “θinko”, “dos”, “uno”, “otSo”, “sejs”]. We also in-
e de decision functions using the same clustering scheme with-
the phase entropy feature (IBI-Magnitud Clustering (IBI-Mag
green line) and the IBI magnitude VAD without clustering

-Mag, red line). As it is shown in the bottom of this figure
accuracy in detection of word endings of the proposed VAD
gher than the other approaches. The decrease of the decision
tion variance in pause periods leads to a better classification of
ilencie/speech frames as we will see in the following section.
In figures 2 and 3 we show the different features used
pause/speech discrimination. In particular we show the bi-
uency components of magnitude and phase before averaging.
n be clearly seen how the phase components in pause frames
botton-right in figure 2) mean a situation of maximum en-

y, as it is shown in figure 4, unlike the correlated phase com-
nts of speech frames (idem in figure 3). Thus, this new feature
d be used in combination with the decision function in terms
e IBI magnitude in equation 8 as:

ηnew(l) = η(l)/H̄
̂Y (13)

re H̄
̂Y denotes the normalized IBI-P entropy (with respect to

BI-P entropy of a set of initial pause frames) over the sliding
ow of observations (equation 11).



5. Experimental framework
The ROC curves are frequently used to completely describe the
VAD error rate. The AURORA 3 subset of the original Spanish
SpeechDat-Car (SDC) database [16] was used in this analysis. The
files are categorized into three noisy conditions: quiet, low noisy
and highly noisy conditions, which represent different driving con-
ditions with average SNR values between 25dB, and 5dB. The
non-speech hit rate (HR0) and the false alarm rate (FAR0= 100-
HR1) were determined in each noise condition. Fig. 5 shows
the ROC curve of the proposed IBI-phase entropy VAD when it
is defined on multiple observations (m= 8 frame delay) under the
worst noise condition (5 dBs). The working points of the ITU-T
G.729 [2], ETSI AMR [4] and ETSI AFE VADs [17] are also in-
cluded as well as other frequently referred algorithms [7, 6, 5, 3]
for recordings from the distant microphone in quiet and high noisy
conditions.

The proposed VAD yields clear improvements in detection ac-
curacy working closer to the upper left corner than any other al-

gori
over
VAD
It im
cent
also
ture
sign
in sp
from
ing
over
ture
nois
addi
spac
ROC
the i

Figure 1: Operation of the proposed VAD on a utterance of the
Aurora3.

Figure 2: Pause frame features. Bispectrum magnitude and phase
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thm used as a reference. The benefits are especially important
G.729 and over the Li’s algorithm [6]. The IBI-P entropy
is more effective when multiple observations are considered.

proves Marzinzik’s VAD [5], the Sohn’s VAD [3], and all re-
ly reported VADs to date for varying significance level. Fig. 5
assesses the influence of the the combination of the two fea-

s (magnitude and phase) on the ROC curves. We observe a
ificant shift to the left-up corner, specially on the working area
eech recognition as we expected in the previous sections and
[15]. If IBI-phase entropy feature is not used, the cluster-

algorithm applied to IBI magnitude yields clear improvements
the competing algorithms also. The purpose of this new fea-
is to achieve a more robust detection algorithm for use in high
e acoustic environments. Thus, IBI-phase entropy leads to an
tional shift-up and to the left of the ROC curve in the ROC
e without additional computational complex. In addition the

curve without clustering is also plotted in order to highlight
mprovement achieved using this technique.

re 3: Speech frame features. Bispectrum magnitude and phase

re 4: IBI-phase entropy over the 2 ∗ m + 1 observations on a
rance of the Aurora3.
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Figure 5: ROC curves obtained for a subset of the Spanish SDC
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6. Conclusions
This paper presented a new technique for improving speech de-
tection robustness in noisy environments. The approach is based
on the combination of two features, i.e. the integrated bispec-
trum function magnitude and phase. The first of them has been
used in many some algorithms for VAD [13, 9] unlike the sec-
ond one. The entropy-based approach is more reliable than pure
energy based methods in some cases, particularly when the non-
stationary noises are mechanical sounds [15]. In other cases, when
entropy becomes very unstable, energy performs well because of
its additive property: energy of the sum of speech plus noise is
always greater than energy of noise. Thus, the new feature pos-
sesses advantages of each individual while compensating the draw-
back of each other. As a result, it leads to clear improvements in
speech/non-speech discrimination especially when the SNR drops.
The proposed algorithm outperformed G.729, AMR and AFE stan-
dard VADs as well as recently reported approaches for endpoint
detection.

7. Acknowledgements
This work has received research funding from the EU 6th Frame-
work Programme, under contract number IST-2002-507943 (HI-
WIRE, Human Input that Works in Real Environments) and
SESIBONN and SR3-VoIP projects (TEC2004-06096-C03-00,
TEC2004-03829/TCM) from the Spanish government. The views
expressed here are those of the authors only. The Community is
not liable for any use that may be made of the information con-
tained therein.

8. References
[1] R. L. Bouquin-Jeannes and G. Faucon, “Study of a voice ac-

tivity detector and its influence on a noise reduction system,”
Speech Communication, vol. 16, pp. 245–254, 1995.

[2] ITU, “A silence compression scheme for G.729 optimized

[3

[4

[5

[6

[7

[8

[9

[10

[11

[12

[13

[14

[15

[16

[17

INTERSPEECH 2006 - ICSLP

2325
for terminals conforming to recommendation V.70,” ITU-T
Recommendation G.729-Annex B, 1996.

] J. Sohn, N. S. Kim, and W. Sung, “A statistical model-based
voice activity detection,” IEEE Signal Processing Letters,
vol. 16, no. 1, pp. 1–3, 1999.

] ETSI, “Voice activity detector (VAD) for Adaptive Multi-
Rate (AMR) speech traffic channels,” ETSI EN 301 708 Rec-
ommendation, 1999.

] M. Marzinzik and B. Kollmeier, “Speech pause detection for
noise spectrum estimation by tracking power envelope dy-
namics,” IEEE Transactions on Speech and Audio Process-
ing, vol. 10, no. 6, pp. 341–351, 2002.

] Q. Li, J. Zheng, A. Tsai, and Q. Zhou, “Robust endpoint
detection and energy normalization for real-time speech and
speaker recognition,” IEEE Transactions on Speech and Au-
dio Processing, vol. 10, no. 3, pp. 146–157, 2002.

] K. Woo, T. Yang, K. Park, and C. Lee, “Robust voice activ-
ity detection algorithm for estimating noise spectrum,” Elec-
tronics Letters, vol. 36, no. 2, pp. 180–181, 2000.
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