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Abstract
Automatic language identification (LID) decisions are made based
on scores of language models (LM). In our previous paper [1],
we have shown that replacing n-gram LMs with SVMs signif-
icantly improved performance of both the PPRLM and GMM-
tokenization-based LID systems when tested on the OGI-TS cor-
pus. However, the relatively small corpus size may limit the gen-
eral applicability of the findings. In this paper, we extend the
SVM-based approach on the larger CallFriend corpus evaluated
using the NIST 1996 and 2003 evaluation sets. With more data,
we found that SVM is still better than n-gram models. In ad-
dition, back-end processing is useful with SVM scores in Call-
Friend which differs from our observation in the OGI-TS corpus.
By combining the SVM-based GMM and phonotactic systems, our
LID system attains an ID error of 12.1% on NIST 2003 evaluation
set which is more than 4% (25% relatively) better than the baseline
n-gram system.

Index Terms: language identification, support vector machine,
discriminative training, language modeling.

1. Introduction
Class-specific language models (LMs) play an important role in
many speech-related classification tasks, such as topic, utterance,
speaker or language identification (LID). Traditionally, these lan-
guage models are trained using maximum likelihood (ML) related
criterion. Recently, discriminative model training techniques have
been applied with good results [2].

One approach to train discriminative LMs is the use of sup-
port vector machines (SVMs) [1]. SVMs are powerful classifiers
that have been shown to perform well in many pattern classifica-
tion problems [3]. In addition to being discriminatively trained, its
training criterion balances the reduction of training errors and its
generalizability to unseen data. Furthermore, the criterion is con-
vex that can be optimized by quadratic programming techniques.
SVMs were proposed for speaker identification in [4, 5, 6] and for
count data in [5, 7] for topic and speaker identification.

In our previous paper, we applied SVMs to estimate class-
dependent language models for LID on the OGI-TS corpus and
studied the selection of kernels, and handling of prior mis-matches
and SVM score normalization. However, the relatively small
amount of data in that corpus limits the general applicability of the
findings. In this paper, we examine the effectiveness of SVM for
LID on the larger CallFriend corpus. The larger amount of training
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and the availability of a development set allow us to examine
etail the effect of back-end processing, fusion of systems as
l as similarity and differences between the GMM tokenization
the PPRLM approaches.
The rest of the paper is organized as follows. In the next sec-
, we briefly review the SVMs and how they are related to LM-
d classification problems. Then, we describe our baseline LID
ems in Section 3. Section 4 describes how we applied SVM
e GMM-tokenization and PPRLM frameworks. The paper is
cluded with a discussion in Section 5.

2. Support Vector Machines
minimizing structural risks, SVMs balance training errors and
eralizability. Denote a set of n-dimensional training samples

i ∈ Rn with class labels yi ∈ {−1, 1}. Consider the separa-
two-class problem. A linear classifier, f(x), defined using the
sification hyperplane as f(x) = w.x + b, separates the classes

f(x) > 0 if yi = 1 (1)

f(x) < 0 if yi = −1 (2)

For SVMs, the optimal hyperplane w is one that separates the
ses while maximizing the distance between the hyperplane and
nearest data points. This distance is called the margin which is
ted to the generalizability of the classifier. It turns out that only
bset of training samples that are close to the hyperplane affect
location of the hyperplane. These are called the support vec-
, denoted as x̃i. The classification hyperplane can be efficiently
ned by constrained optimization using quadratic programming
niques. Because the optimization function is convex, global
imal can be obtained.
Non-separable cases can be solved by introducing an extra
alty for errors. For the non-separable case, there is a trade-
etween the training classification errors against the size of the
gin. With a larger margin, the classifier is better in generalizing
nseen data.
One of the main power of SVM is in its ability to general-
into a non-linear classifier. This is achieved by mapping the
ures to a high dimensional space, denoted as H, using non-
ar functions. IfH is created with complex non-linear mapping
tions, calculating the hyperplane can be difficult. Instead, the
sifier, f(x), can be written as a function of the inner product
een the data and the support vectors. That is,

f(x) =

NsX

i

αiK(x, x̃i) + b,
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where Ns is the number of support vectors, αi is the weight for
the support vectors x̃i and K(., .) is the kernel function defining
the inner product between x and x̃i. By using kernels, the space
H in fact does not need to be explicitly defined. Some commonly
used kernels include the polynomial kernels and the Gaussian ra-
dial basis function kernels. For details about SVMs, readers can
refer to [3, 8]

2.1. LM-based Classification as a Linear Classifier

In language identification, classification is mainly decided based
on the token patterns captured by class-specific language models.
Denote cl(i, j) as the count in class l, of observing token i, j con-
secutively, and denote cl(i) as the count of token i. The bigram
probability (via interpolated n-gram), pl(j|i), is given by

pl(j|i) = (1 − α)
cl(i, j)

cl(i)
+ α

cl(i)P
i
cl(i)

where α is the linear interpolation parameter to smooth the bigram
with unigram. Higher order n-gram model probabilities can also
be estimated in a similar fashion.

Using above model for classification can be viewed as deriving
a separating hyperplane from the n-gram probabilities. To simplify
our discussion, consider deciding between two classes, a and b

and arrange the n-gram counts in a vector from, denote as x with
x[i] being the i-th n-gram. Similarly, the n-gram probabilities,
denoted as pa and pb for the two classes can also be arranged in
vector form. By labeling class a as class “1” and b as class “-
1”, a traditional n-gram model classifier would have the separating
hyperplane ŵ given as

ŵ[i] = log
pa[i]

pb[i]
.

This shows that the n-gram is a special case of a linear classi-
fier with the n-gram counts as the features and the log odds as the
weights, which can be replaced by discriminatively trained SVMs.

While SVMs are mostly defined for two-class classification
problems, several approaches have been suggested in the litera-
ture to perform n-way classification. These include building bi-
nary classifiers between all class-pairs, one-against-all classifiers
for each target class and, using a coding approach [9]. Since there
is no clear performance advantage of using one approach versus
the other, we use the one-against-all approach because of its sim-
plicity.

3. Baseline LID system
3.1. LID System Overview

Most LID systems consist of a set of frontend tokenizers to convert
speech acoustics into sequences of discrete tokens. Two widely
used tokenization approaches are: the phoneme recognizer [10],
and the Gaussian mixtures [11]. Other tokenizers, such as syl-
lables [12], were also proposed. During training, language pat-
terns are captured by class-specific language models. During test,
language identification decisions are made by comparing the lan-
guage modeling likelihoods or scores. The language modeling
scores are typically transformed for better classification by the
backend processing (bp). Scores from different tokenizers or sys-
tems are then combined by fusion to make a single classification
decision.

3.2.
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Baseline Experiment Setup

LID experiments were performed on the CallFriend Corpus
evaluated on both the NIST 96 and NIST 2003 evaluation sets.
is work, we focused on the close-set LID instead of verifica-
. Twelve languages were identified including: American En-
h, Arabic, Farsi, Canadian French, Mandarin, German, Hindi,
nese, Spanish, Korean, Tamil and Vietnamese. The training
sisted of 20 complete 30 minutes conversations for each of the
anguages. We performed experiments only on the 30-second
subset. The NIST 1996 development (dev96) and evaluation
eval96) consists of 1147 and 1492 segments respectively. The
3 evaluation set (eval03) consists of 1280 utterances of which
come from CallFriend. Furthermore, 80 of the non-CallFriend
rances are Russian and were excluded in our experiments. The
6 and eval96 together serve as the development data for the
03.
Two separate systems were built, one using the GMM-
nization approach and another the PPRLM approach. These
ems were fused to form the final system.

For the GMM tokenization approach, the baseline system used
8 GMM components. 12 GMM-tokenizers were trained, one
each language, using language specific data. Shifted delta
tral coefficients with configuration 7-1-3-7 [13] were used
he acoustic features. During training, silence detection was
ormed with a two-state GMM-based silence detector together
energy information from both sides of a conversation. Silence
ction was also applied during test. Interpolated LMs were used
e baseline experiments with the weights of 0.66, 0.33 for un-
m and bigram [11]. This system is denoted as the GMM-LM
em.

The PPRLM system consisted six different phoneme recog-
rs, which are: English, German, Hindi, Japanese, Mandarin
Spanish. They were trained from the OGI-TS corpus and each
neme was represented by a 3-state, left-to-right hidden Markov
el with 4 Gaussian mixtures per state. These phoneme rec-
izers have a phoneme recognition accuracy of approximately
on the OGI-TS corpus. To improve the recognizers’ perfor-
ce on the Callfriend Corpus, unsupervised MLLR adaptation
2 regression classes were performed but only on a small sub-
f the training data. Interpolated trigram language models were
, trained on the recognized phoneme sequences.

Two backend processing and fusion schemes were tested.
he first case, denoted as backend-processing-with-weighted-
age (bp-wt-ave) [10], applied the backend processing before
bining scores across tokenizers. For each test sequence from a
le tokenizer (applicable to both the GMM-LM and PPRLM),
es from the LMs were stacked into a 12-dimensional vector
transformed by a linear discriminative analysis (LDA) matrix
reduced the data vector dimension to 11. The LDA matrix
trained on the respective development set. The resultant 11-
ensional vector was then considered as features in a Gaussian
sifier which used a single Gaussian with diagonal covariance
present each language. While the likelihood of the Gaussian
sifier could be used to make LID decision per tokenizer, they
e again considered as scores and were linearly combined with
es from other tokenizers. The weights in this linear combina-
were estimated from the development set.

For the GMM-LM system, in addition to the transformed LM
es from the 12 tokenizers, the acoustic scores from the 12
M tokenizers can also be used and considered as a separate
ems. Thus, the fusion involved the weighted combination of



eval96 eval03
GMM PPRLM GMM PPRLM

before bp 34.3 66.7 33.2 56.3
after bp 61.3 66.8 54.0 60.3

bp-wt-ave (w/o Ac-sc.) 70.4 83.2 63.3 77.7
fn-bp (w/o Ac-sc.) 71.8 84.2 70.3 78.3

bp-wt-ave (w Ac-sc.) 75.3 - 65.9 -
fn-bp (w Ac-sc.) 74.7 - 75.6 -

Table 1: Baseline LID accuracy of PPRLM and GMM-LM with
two types of back-end/fusion processing

13 systems. For the PPRLM system, scores from the 6 phoneme
recognizer were combined.

Alternatively, scores from all LMs and all tokenizers can be
first stacked into a single vector, then transformed by an LDA ma-
trix and evaluated by a Gaussian classifier. This approach is de-
noted as fusion-before-backend-processing (fn-bp). Using this ap-
proach, the GMM-LM system, including the acoustic likelihood,
will have a stacked vector of 13×12 = 156 and the LDAmatrix of
dimension 156×11. For the PPRLM, the stacked vector will have
the dimension of 6 × 12 = 72 and the LDA matrix of dimension
72 × 11.

3.3. Baseline Results

Baseline results are tabulated in Table 1. The top two lines show
the average single tokenizer performance before and after back-
end processing (bp). Significant improvement was obtained for
both the GMM-bigram and PPRLM-trigram systems after backend
processing and fusion. For the GMM-based system, including the
acoustic likelihood score (denoted as Ac-sc.) further improved per-
formance. Note that even though there is a mis-match between the
OGI-TS trained phoneme recognizers and CallFriend, the PPRLM
system still outperformed the GMM-LM system. Weighted com-
bination of the GMM-LM and PPRLM scores (denoted in bold
above) resulted in an accuracy of 86.7% and 83.3% for eval96 and
eval03 respectively which are 3 to 5% (absolute) better than the
PPRLM results as shown in Table 4.

4. SVM-based System

As discussed in Section 2, the ML estimated n-grams can be re-
placed by SVMs with frequency of n-token sequences as features.
In our previous paper [1], we found that the balance of prior is
very important to SVM performance. Furthermore, back-end pro-
cessing contributed little to the overall performance and simple
averaging performed the best over other fusion techniques. Some
of these findings can be affected by the amount of test and de-
velopment data. In addition, with large amount of training data,
modifications to the SVM training will be needed especially for
the GMM-tokenizer sequence to reduce the possible number of
features. Similar to our work in [1], all SVM experiments used a
linear kernel with the default settings with the inverse-document-
frequency (IDF) weighting on the SVM features. Our preliminary
experiments on using other kernels or with different settings do not
resulted in any significant improvements.
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eval96 eval03
1-gm 2-gm 1-gm 2-gm

before bp 65.1 62.3 57.0 53.0
after bp 66.1 62.8 60.4 57.9

-wt-ave (w/o Ac-sc.) 75.4 73.7 71.7 69.7
fn-bp (w/o Ac-sc.) 71.7 73.3 73.9 72.3

-wt-ave (w/ Ac-sc.) 77.6 76.2 71.8 71.2
fn-bp (w/ Ac-sc.) 75.7 75.9 76.8 76.2

le 2: LID accuracy of GMM-SVM with two types of back-
/fusion processing

eval96 eval03
2-gm 3-gm 2-gm 3-gm

fore bp 72.3 73.7 64.3 64.9
fter bp 71.1 74.4 65.2 70.0

-wt-ave 88.1 88.8 81.9 84.1
fn-bp 85.1 89.8 81.2 84.8

le 3: LID accuracy of PPRSVM with two types of back-
/fusion processing

GMM-SVM System

call the system with GMM tokenizers as the GMM-SVM sys-
. Because the tokenizer has 2048 mixtures, the number of pos-
e token n-grams is huge. For bigram, it can be as high as 20482.
ake this easier on the SVM, feature reduction is needed. A
ple way to reduce the number of n-grams is to set a minimum
nt threshold. An alternative is to train a different GMM tok-
er with smaller size just for higher order n-gram. For example,
can use a 2048 component GMM for unigram modeling but a
-component GMM for bigram modeling.

In our experiments, we combined the above two approaches.
bigram, the 2048-component GMM was used but with a min-
m count of 70. This threshold was found to give the best bal-
between performance and feature counts. For trigrams, be-
e the 2048-component GMM would create too many distinct
am, we used a 256-component GMM instead, together with
minimum count constraint.

Table 2 shows the GMM-SVM performance with different n-
orders. We notice that unigram and bigram have very similar
ormance and that fusion-before-backend-processing is signif-
tly better than bp-wt-ave for eval03. Comparing the perfor-
ce in Tables 1 and 2, before the addition of the acoustic scores,
M-SVM is significantly better than GMM-LM by more than
in both eval96 and eval03. However, after the addition of the
stic scores, the benefit of SVM is vastly decreased to less than

PPR-SVM System

ilar to the GMM-SVM system, SVMs can replace the n-gram
els in PPRLM. We called this the PPRSVM system. The re-
s are shown in Table 3. Compared to the results in Table 1,
PPRSVM is more than 5% better than the PPRLM irrespec-
of which fusion approach was applied. Different from GMM-
, there is little difference between fusion-before-backend-

essing and backend-processing-with-weighted-average. Sim-
to PPRLM, the performance on eval96 is more than 6% better
eval03.



eval96 eval03
wt-ave fn-bp wt-ave fn-bp

GMMLM + PPRLM 86.7 82.8 83.3 81.3
GMM-SVM + PPRSVM 88.9 88.5 86.1 87.9

Table 4: LID accuracy of combining GMM-SVM and PPRSVM

4.3. Combination of SVM-based systems

The GMM-SVM and PPRSVM systems can be combined. Be-
cause the PPRSVM system is significantly better than the GMM-
SVM system, the potential gain in this case, may be smaller than in
other combinations. We again tried two combination approaches.
In the first one, the language scores are linearly combined with
the weights learned from the development set. Alternatively, we
consider the two systems as two frontends and applied the fusion-
before-backend-processing above. The results of fusion of GMM-
LM and PPRLM, and fusion of GMM-SVM and PPLSVM are tab-
ulated in Table 4. Combination of the PPRSVM and GMM-SVM
systems gives good improvement for eval03 but degraded perfor-
mance slightly in eval96. That is probably because of the larger
difference in performance between GMM-SVM and PPRSVM in
eval96 and that the backend processing parameters and the system
combination weights were both estimated from the same develop-
ment set which can cause over-tuning on the set. Interestingly, out
of the two combination schemes tested, the baseline system per-
forms better when using linear combination while the systems per-
form slightly better with another level of fusion-before-backend-
processing.

5. Discussion
The experimental results demonstrate the usefulness of SVM as
replacement of language models for language identification even
when applied to a large corpus such as CallFriend. This is espe-
cially evident in the single tokenizer results before backend pro-
cessing. Absolute gains of 20-30% and 6-7% are observed in
GMM and phonotactic based systems respectively.

Backend processing improves the baseline GMM and phono-
tactic systems by 20-27% and 1-4% respectively but SVM perfor-
mance can only be improved slightly (1-3% and 2-5%). The fact
that backend processing is useful for SVM is different from our
findings in [1] probably because of the availability of development
set for learning the backend processing parameters in CallFriend.
A smaller gain from backend processing is expected because SVM
is discriminatively trained and thus, the benefit of a discrimina-
tively trained LDA may become smaller.

Both fusion approaches give good improvement and there is
no clear winner as to which one is better. There seems to be inter-
action between the evaluation set and type of system. However, in
most cases, the fusion-before-backend-processing gives better per-
formance on eval03 and comparable performance on eval96 while
there is much bigger variance in the performance of backend-
processing-with-weighted-average. Different from our findings
in [1], simple average after backend processing is not as good as
weighted averages which can be explained by the better weight
estimation using the development set.

For the GMM-LM, the addition of acoustic scores gives a gain
of 4-5% but for the GMM-SVM, the gain from adding the acous-
tic scores is much smaller in the range of 2-3%. It is not clear
what correlations there is between the SVM and the acoustic scores
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r than potentially dynamic range issues. This also reduces the
of GMM-SVM over GMM-LM. Because the GMM-SVM
em uses a very large feature set, there may also be issues in
ergence or balance between SVM training margins. These is-
will require further study.
From Tables 1, 2 and 3, one can notice many differences in
avior, such as the selection of fusion scheme, between eval96
eval03. There are 3 major differences between the two evalu-
n sets. They are: 1) overlap in dev96 and eval96, 2) non Call-
nd data in eval03, and 3) larger amount of development data
val03. Whether any of these causes the difference in behavior
t clear and further study is needed.
Overall, comparing the best combination of the baseline sys-
s with the best combination in the SVM-based systems, the
systems outperforms by 2-4%. More combination is also
ible, including the combination of different n-gram of differ-
orders, either in SVM features or in post processing. Our pre-
nary results are very encouraging with improvement on the
03 closed to 3% absolute. This is currently being investigated.
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