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ABSTRACT

Automatic speech recognition of a tonal and syllabic language such
as Chinese Mandarin poses new challenges but also offers new op-
portunities. We present approaches and experimental results con-
cerning the choice of base units for acoustic modeling, pitch es-
timation and how to integrate pitch estimates into the modeling
framework. The experimental evaluations are carried out both on
rather clean headset data and on noisy and reverberant distant talk-
ing speech data. Results show that tonal base units offer a word
error rate reduction of more than 30% compared to toneless base
units. This holds for both phoneme models and initial-final mod-
els. The integration of pitch as an additional feature stream yields
another remarkable improvement of more than 20% over the best
tonal baseline system. In a two-stream modeling approach, the pitch
stream distributions can be strongly tied such that the overall model
size increases only very moderately.
Index Terms: Chinese ASR, base unit selection, pitch

1. INTRODUCTION

Chinese Mandarin is a tonal syllabic language. Each Chinese char-
acter represents a syllable comprising a specific tone of the five
tones, which are defined by characteristic pitch contours. For auto-
matic speech recognition (ASR) this raises several interesting ques-
tions. One concerns the choice of the base model units, i.e. either
phoneme-based or based on syllables, and which of the base units
should be allowed to be tone-dependent. Another question regards
the usefulness of explicitly extracting pitch features and how to best
integrate them into the modeling framework.

In this paper we present a thorough investigation concerning
these questions. Acoustic modeling is performed with HTK [1] and
experimental evaluations are carried out on the Mandarin Speecon
data base [2], which allows identical experiments on clean headset
data as well as on noisy and reverberant distant talking microphone
data.

2. CHINESE SPEECH RECOGNITION

Studies have been performed on Chinese speech recognition in many
aspects. Concerning the choice of base model units, Xu et al. [3]
have made experiments on three base unit sets (syllable, phoneme
and Initial-Final) and found that the Initial-Final (IF) set shows best
performance in pure Chinese speech recognition. Chen et al. [4]
have defined a new base unit set consisting of premes and tonemes.
A premes is a combination of the initial consonant with the glide of
the final’s vowel (if present). For example, the Initial L corresponds
to four premes: L LI LU LY U . The intuition is that the shapes
of the mouth for the four premes, even from the beginning, are very
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rent; thus it might make sense to treat them as different base
. A toneme is the remaining part of the final including one of the
tones. In this representation the word LUAN3 is represented
U + AN3 (as compared to L + UAN3 in a conventional IF
m). However, the paper does not compare this base unit to the

nary IF definition with respect to its ASR performance.
Concerning pitch extraction and incorporation into ASR sys-
, Chen et al. [4] have used pitch as an acoustic parameter. In
r to compensate for the unvoiced sections in the pitch contour,
have applied a continuation algorithm based on a running aver-
In [5], investigations on the effect of pitch in large vocabulary

inuous speech recognition (LVCSR) and isolated word recog-
n are reported. Considerable improvements are achieved once
context and normalized pitch are incorporated into the ASR sys-
However, applying a language model to the baseline system is

d to achieve comparable character accuracy. Thus, in LVCSR,
does not seem to substantially help improve the performance.

ng et al. [6] present an efficient real-time pitch tracker and a set
ne features, resulting in a vast 30% reduction of the character

r rate compared to the non-tonal baseline. They show that both
and its derivative as well as the degree of voicing are useful fea-
for tone recognition. However, long-term pitch normalization

moving average is necessary to remove the negative influence of
peaker bias and the phrase effect of slowly falling pitch within
entence.

3. THE CHOICE OF BASE UNITS

e 1 and Table 2 show the base unit inventory of the phoneme-
the IF-based systems utilized in this study. The phonetic inven-
is based on the SAMPA proposal as used in the Speecon lexicon

honemes

n, f, k, k h, l, m, N, n, p, p h, s, s=, s‘, t, t h, ts,
ts=, ts= h, ts h, ts‘, ts‘ h, x, z‘, @, {, X7, A a,
a ?, E, e, E r, i, I, i=, i‘, o, U, u, y, w, j, H, @‘,
@∼‘, X7‘, a‘, a∼‘,E r‘, o‘, u∼‘, u‘

nitials
I, a, e, o, u, v, b, c, ch, d, f, g, h, j, k, l, m,

n, p, q, r, s, sh, t, x, z, zh

inals

a, ai, air, an, ang, angr, ao, aor, ar, e, ei, en, eng,
engr, enr, er, i, ia, iai, ian, iang, iangr, iao, iaor,
iar, ib, ie, ier, if, in, ing, ingr, inr, iong, iou, iour,
ir, o, ong, ongr, or, ou, our, u, ua, uai, uair, uan,
uang, uangr, uanr, uei, ueir, uen, ueng, uo, uor,
ur, v, van, vanr, ve, ver, vn, vr, @

Table 1. Toneless base units used for acoustic modeling.
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Phonemes n, f, k, e0, e1, e2, e3, e4, u0, u1, u2, u3, u4, ...

Initials I, a, e, o, u, v, b, c, ch, d, f, g, h,...

Finals a0, a1, a2, a3, a4, ai0, ai1, ai2, ai3, ai4,...

Table 2. Tonal base units used for acoustic modeling (initials are not
marked with tone); 0 indicates neutral tone.

The IF inventory is based upon [3] whereas dummy initial mod-
els for initial-less syllables are applied (“ang = a ang”) to ensure
that each syllable consists of an initial and a final in order to reduce
the number of possible triphone combinations. In the tonal systems,
only vowels and final models are split into up to five tone-dependent
versions, which limits the number of base units. Consonants and ini-
tials will acquire tone-dependence anyway when turning to context-
dependent models having tonal vowels and finals in the context. De-
pending on the choice of the base units, different methods of system
parameter reduction by means of model tying can be applied. Some
will be discussed and evaluated briefly in Section 6.

4. PITCH ESTIMATION

Several studies have indicated that for speech signals class-
dependent correlation exists between the spectral envelope and pitch
and that pitch can be predicted from MFCC vectors [7]. It is un-
clear, however, how robust the estimation process is in lower SNR
scenarios. Hence, in our work we have adopted the approach of ex-
plicitly estimating pitch by the use of two different pitch estimation
algorithms, a simple noise-robust pitch algorithm based on the nor-
malized autocorrelation (NAC) [8, 9] and the widely used RAPT
[10] algorithm as integrated in the Speech Filing System (SFS) [11].

The first algorithm is based on a frame-by-frame computation of
the normalized autocorrelation eRxx of a signal window x(n)

Rxx(m) =
1

N

N−m−1X
n=0

x(n)x(n + m) (1)

eRxx(m) =
Rxx(m)

Rxx(0)
(2)

of the low-pass filtered speech signal. The filtering is applied to
obtain a smooth NAC contour. An N-best list of pitch candidates
is computed by searching for the N largest positive peaks of the
NAC in the relevant pitch range between approx. 70 and 400 Hz.
To eliminate estimation errors such as pitch halvings and doublings
and to smooth the “spiky” nature of pitch contours a Dynamic Time
Warping (DTW) algorithm can be applied to the sequence of N-best
pitch candidates. Furthermore, a voiced-/unvoiced decision can be
made by comparing the maximum NAC coefficient to a threshold. A
similar, but more elaborate algorithm, is the RAPT algorithm, which
is described in detail in [10].

In order to robustly integrate pitch information into the acoustic
model, a number of further measures were taken: Firstly, in order to
reduce the inter-speaker variability each pitch estimate was normal-
ized by a running average pitch, effectively removing differences in
the pitch range due to speaker age or sex.

Secondly, the fact that pitch is present only in voiced frames
creates discontinuities in the pitch contour. This might cause se-
vere numerical problems in the training of the acoustic models [4].
Hence, continuation was enforced by letting the pitch variable f0(n)
approach the running average pitch f̄0(n) during unvoiced frames:

f0(n) = μ · f0(n − 1) + (1 − μ) · f̄0(n) (3)

f̄0(n) = ρ · f̄0(n − 1) + (1 − ρ) · f0(n − 1) (4)
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1. RAPT pitch contour for utterance “xian4 chang3 zhi2 bo1”;
r: before postprocessing; middle: after applying a continuation
rithm; lower: normalization based on the continuated pitch.

re μ and ρ are the update parameters.
As described above, spikes occurring in the pitch contour can
liminated with an N-best list and DTW. A computationally more
ient alternative is to use a 1-best list and subject it to a low-pass
. In the experiments we used two different forms of the low-
filter: a sliding average filter, replacing the center value of the
ow with the window mean, and a median filter, with the median

e of the window instead. The window length was determined
rimentally.

5. INTEGRATING PITCH AS A FEATURE IN ASR

ave followed two strategies to incorporate pitch as an additional
re: In the one-stream system the MFCC vector was comple-

ted by the pitch estimate as an additional feature and the first
second derivatives of this MFCC+pitch vector were appended.
In general, in a multi-stream system using Gaussian mixtures
bservation probability bl of state l for observation o can be de-
ed as follows:

bl(on) =

SY
s=1

"
MlsX
m=1

clsm N (osn; μlsm, Σlsm)

#γs

(5)

S being the number of streams, Mls the number of mixtures for
l of stream s, clsm the mixture weight for mixture m, and the
nent γs the stream weight.

For S = 2 this yields the two-stream system in which the
Cs and their derivatives constitute one stream, while the pitch
its derivatives constitute the second stream. One advantage
e two-stream approach is that we can assign different stream
hts γs to emphasize a particular stream. Moreover, the sepa-
n into streams allows independent clustering of each stream’s
ability distribution functions (pdfs).

6. EXPERIMENTAL RESULTS

Setup

ur experimental evaluations spectral subtraction followed by
FCC generation is performed by the Harman/Becker internal



Four Baseline Systems #Monophones #Triphones

Toneless Phoneme System 52 1438
Toneless IF System 93 1868
Tonal Phoneme System 152 2269
Tonal IF System 305 2226

Table 3. Number of base units in each baseline system.

Clean Data Noisy Data
Mono Tri Mono Tri

Toneless Phoneme digits 11.59 8.09 27.87 22.84
System WER (%) cmd+cs 11.55 3.70 23.38 7.98
Toneless IF digits 9.93 7.57 26.93 23.36
System WER (%) cmd+cs 8.47 3.63 18.95 7.70
Tonal Phoneme digits 10.81 7.95 26.12 22.05
System WER (%) cmd+cs 9.49 2.44 19.82 5.87
Tonal IF digits 9.98 8.60 25.34 23.39
System WER (%) cmd+cs 6.29 2.51 13.55 6.64

Table 4. Word error rates measured on the four baseline systems on
both clean and noisy data.

front-end while the acoustic modeling and decoding is performed
with HTK [1]. Eleven MFCCs including the log-energy as well as
Δ- and ΔΔ-coefficients are calculated. Each HMM state’s pdf is
modeled as a mixture of 8 Gaussian distributions with diagonal co-
variance. We have based our investigation on the Mandarin data
collected within the Speecon project [2]. We refer to the headset
data (channel0) as clean data and to the distant talking microphone
data (channel2) as the noisy data. For each channel, 550 speakers
were recorded, which results in over 100 hours of speech data. In
all our experiments we use 80% of the speakers for training and the
remaining 20% for testing. Tests are performed with two types of
grammars: The first is an isolated word grammar which contains
roughly 1000 words and comprises voice-commands and names of
cities and streets. This will be referred to as “cmd+cs”. The sec-
ond is a digit loop grammar, which allows the recognition of digit
sequences of arbitrary length.

6.2. Useful base units

Table 3 lists the number of base units (monophones) as well as the
number of triphones in the four setups investigated. As we only train
triphones appearing at least 100 times within the training data, the
number of triphones only moderately varies between the systems,
which makes system sizes and recognition performances compara-
ble.

Table 4 shows the measured system performances of all possi-
ble combinations of models and data. In all experiments the per-
formance on clean data is measured with models trained on clean
data, while the performance of the noisy data is evaluated with dif-
ferent models that were trained on the noisy distant microphone
data. Several important conclusions can be drawn from these re-
sults: When looking at the monophone system performance, IF mod-
els clearly outperform the phoneme models, but when turning to
context-dependent models, there is no clear tendency anymore. In
the case of the tonal model, the phoneme system even outperforms
the IF-based one. Strikingly, the tonal models offer a vast improve-
ment in accuracy without incorporating pitch as a dedicated addi-
tional feature. It is a 34% WER reduction on the cmd+cs test set
compared to the toneless system in triphone modeling. This clearly
indicates that pitch information is present in the MFCCs and con-
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Clean Data No. of
digits cmd+cs models

Triphone 7.57 3.63 1868neless IF
Biphone 8.15 4.93 717stem WER (%)
Reduced 7.57 3.57 1660

nal Phoneme Triphone 7.95 2.44 2269
stem WER (%) Reduced 8.29 2.63 1829

le 5. Experimental results after parameter tying. “Triphone”
s to the original baseline system without parameter tying while
uced” refers to two different parameter tying methods based on
espective toneless and tonal triphone systems.

s that the simplified view of tone purely affecting pitch without
encing other articulation parameters is only a rough approxi-
on. The digit-loop tests hardly gain from tonal models, espe-
y so with context-dependent models. Considering that there are
y digit utterances within the speech data, even the toneless ver-
s of the involved triphones mainly see digit data in the correct
. Therefore, specializing the models to tone-dependent versions
ly changes the models involved in digit recognition.
Because the best performance is achieved in the tonal phoneme
p and as phoneme-based modeling simplifies the modeling and
gnition of English loan words, phonemes were chosen as base
for the following experiments.

Table 5 summarizes the results obtained from several approaches
odel tying based on the toneless IF and tonal phoneme setups on
lean data (ref. Table 4). In the IF system, reducing the context-
ndency on biphones in a way that considers context-dependency
within the syllables leads to a remarkable reduction in the num-

of models, but it also comes along with a considerable perfor-
ce degradation. It appears to be of great importance to account
ontext across syllable boundaries and model tying must not be
ied that aggressively. When tying all Final-Initial+Final models
hich the left final context ends on the same sound and in which
ight final context begins with the same sound (i.e. cluster ang-
i and ying-g+uo) the number of triphone models is reduced by
10% with even a slight yet insignificant improvement in recog-
n accuracy. Reducing the number of context-dependent models
e phoneme-based setup is less successful. The last row of Table
ows the results when clustering all context-dependent versions
phone when the context only differs with respect to the tone (i.e.
tering u2-H+y2 and u0-H+y3).

Integration of pitch as a feature

e 6 lists the recognition performance observed with the rather
p autocorrelation-based pitch estimator as an additional speech
re. In the one-stream setup, the pitch estimates (including Δ
ΔΔ) are simply appended to the MFCC feature vector. In the
stream setup, the pitch estimates are modeled as a separate fea-
stream with each state’s pitch pdf consisting of two Gaussian
ponents and the stream weights are fixed at 0.2 and 0.8 for the

stream and the MFCC stream, respectively. These values were
rmined during preliminary experiments. It is obvious, that the
pitch estimates without normalization and continuation as de-
ed in Section 4 significantly impair recognition accuracy. When
is normalized and continued, we see a remarkable improve-

t on the clean data, which leads to a 21% WER reduction com-
d to the baseline system, while we still observe a degradation
e noisy data. With the pitch estimates additionally low-pass fil-
, we gain an improvement on the noisy data, too, at least for the

+cs test set. Looking at the two-stream models, we see much



Clean WER (%) Noisy WER (%)
digits cmd+cs digits cmd+cs

BL 7.95 2.44 21.98 5.82
NAC0 8.60 5.46 - -one-
NAC1 6.65 1.93 23.54 6.96

stream NAC2 6.69 2.19 23.88 5.13
NAC3 8.73 2.16 24.03 8.37
BL 7.95 2.44 21.98 5.82

two- NAC1 5.85 2.04 18.89 4.57
stream NAC2 5.88 1.95 18.84 4.45

NAC3 6.03 2.06 18.60 4.56
RAPT 6.71 1.92 18.26 4.06

Table 6. Experimental results on NAC and RAPT pitch after ap-
plying each essential processing step. BL: Tonal Phoneme-triphone
baseline system. NAC0: BL+ NAC pitch. NAC1: NAC0+pitch con-
tinuation and normalization. NAC2: NAC1+smoothing with an av-
erage filter. NAC3: NAC1+smoothing with a median filter. The last
row is BL+RAPT pitch with continuation and normalization.

Clean Data WER (%)
digits cmd+cs

N1 N2

NAC1 5.85 2.04 31k 31k
NAC1 1 6.06 2.05 31k 19k
NAC1 2 6.72 2.00 31k 660
NAC1 3 5.71 2.36 27k 31k
NAC1 4 6.76 2.58 27k 660

Table 7. Experimental results on NAC pitch using the two-stream
strategy with mixture tying NAC1 1: NAC1+second stream vowel
tying. NAC1 2: NAC1+second stream vowel+consonant tying.
NAC1 3: NAC1+first stream tying. NAC1 4: Combination of
NAC1 2 and NAC1 3. N1 and N2 refer to the number of distri-
butions in the first and second stream, respectively.

more consistent and bigger improvements on both test sets. Here,
the additional filtering has only a little, hardly significant influence.

The last row of Table 6 finally states the performance when using
the more elaborate and expensive RAPT pitch estimates as features
in the two-stream setup. It is obvious, that there is no consistent dif-
ference on the clean data. Our cheap estimator seems to be sufficient.
On the noisy data, however, the RAPT pitch-based models show a
significantly better performance with around 30% WER reduction
on the cmd+cs test set compared to the pitchless baseline.

Table 7 lists the system performance evaluated on different se-
tups of parameter tying based on the unclustered two-stream setup
NAC1 (ref. the 7th row of Table 6). In NAC1 1, all vowel triphones
of the same center vowel and tone share the same pitch stream dis-
tribution. In NAC1 2, in addition to the vowel tying of NAC1 1,
all consonant triphones of the same center consonant share the same
pitch stream distribution. In NAC1 3, all vowel triphones that only
differ in the tone of the center vowel share the same MFCC stream
distribution. The second stream is unclustered. NAC1 4 combines
the second stream clustering of NAC1 2 and the first stream clus-
tering of NAC1 3. It is obvious that the strong tying of the second
stream comes along without additional error on the cmd+cs test set
and that the moderate tying of the first stream even leads to some im-
provement on the digit loops. The overall tendency is not that clear,
but it indicates that the pitch stream can be clustered strongly, so that
the increase in model size of the two-stream system compared to the
pitch-less one-stream system is very moderate.
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7. CONCLUSION

resented an investigation into the crucial questions that arise in
cenario of Chinese speech recognition. Experiments were per-
ed on clean and noisy data of the Mandarin Speecon database.

cerning the question of useful base units, it turned out that once
ing at context-dependent models, phoneme models perform at
just as good as syllable-based Initial-Final models. As phoneme
els simplify the modeling of English loan words, this is regarded
e prime choice for future work. For both, phoneme models and
odels, tonal base units offer more than 30% improvement in

gnition accuracy over toneless base units even without having a
cated pitch feature. The integration of pitch as additional feature
m results in more than 20% WER reduction, which is another
rkable improvement. On clean data simple autocorrelation co-
ients yield similar improvements as more elaborated pitch esti-
rs, while on the noisy data, the more expensive RAPT pitch es-
tor appears to be worth it. The two-stream model with a separate

feature stream turned out to be beneficial in terms of recogni-
accuracy over the one-stream approach. It also offers the oppor-
y of different parameter tying strategies for each stream which
shown to yield well performing systems with only a moderate
ase in system parameters over the pitch-less baseline system.
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