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Abstract
We review the various approaches that have been used to

define the target cost in unit selection speech synthesis and show
that there are a number of different and sometimes incompati-
ble ways of defining this. We propose that this cost should be
thought of as a measure of how similar two units sound to a
human listener. We discuss the issue of what features should
be used in unit selection and the pros and cons of using derived
features such as F0. We then explore some algorithms used to
calculate target costs and show that none are really ideal for the
problem. Finally, we propose a new solution to this that uses
a neural network to synthesise points in acoustic space around
which we can build new clusters of units at run time.

Index terms speech synthesis, unit selection, target cost, deci-
sion trees, neural networks

1. Introduction
The now standard formulation of unit selection described in
Hunt and Black [4] defines unit selection as a process whereby
we examine various sequences of units from a database, and
choose the one which gives the lowest total cost for the sen-
tence we wish to synthesise. This total cost is calculated from
separate join costs, which measure how well two adjacent units
join, and target costs, which we will now discuss. In the original
paper, Hunt and Black describe this as “an estimate of the dif-
ference between a database unit and a target unit”. Most other
papers use a similar definition, using terms such as “the degree
to which the database unit matches the target”, or “a distance
measuring the similarity” between the database and target unit.

The main issues with the target cost are that we know that
simply measuring the “objective” distance between two sets of
features rarely results in distance that corresponds with human
perception.

2. Defining the purpose of the target cost
First let us consider a very benevolent system which does not
suffer does any data sparsity problems. This can either be
achieved by having a very large database, or else by only hav-
ing a small number of features that we use for selection. At
run-time, our algorithm iterates through each item in the spec-
ification, a description of what we require that has been gener-
ated by the text analysis module. The algorithm finds the target
feature values, and simply finds the units in the database which
match this. As there are no sparse data problems there are plenty
of examples of units matching the specification. It can be ar-
gued that we are now done with respect to the target cost; we
have plenty of examples of exact matches, and we will now use
the join cost to find final selection. We have two further possi-
bilities. Firstly, we could consider other units; but why should
we? By definition none will be exactly what we want, and why
would be ever want to choose a unstressed unit when we actu-
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want a stressed one? It can be argued that the other units in
database are simply “wrong” and should not be considered.

In a slightly more common situation, we of course do have
rse data problems, which manifest themselves in there being
er insufficient units within the desired class, or no units at all
hin the class. As we increase the number of features we wish
onsider, low and zero occupancy classes become the norm,
h that often we never have exactly the units we want. In such
es we have to consider non-matching units, and here we hit
nub of the problem - while we have to consider other units
ive the join cost a chance, all the other units we consider are
ply “wrong”; the listener will hear that the units aren’t the
s they are supposed to be and the speech will not sound as it
uld.

It turns out that the situation is not as bleak as just por-
ed; this is because the acoustic space which units from a par-
lar feature combinations lie often overlaps with the acoustic
ce from other units. This many-to-one mapping is of course
at makes speech recognition difficult; it is well known that
ustic spaces associated with one phone overlap with those
ther phones, and this extends to different feature definitions

hin phones as well. This leads us to our first definition of
et cost, namely that it should be a measure of how similar
units sound. If two units sound the same to a listener, then

s safe to use one in place of the other. Significantly, in such
es the listener will not realise a unit with the “wrong” feature
cription is being used. We shall call this type of target cost
ceptual cost as it is purely a measures of how similar two
ts sound to a listener. Note that this is different from both
uistic cost and acoustic cost, which are discussed below.

Now let us consider a different formulation of target cost,
ich we shall call linguistic cost. This is a cost that operates
ely in linguistic terms; acoustics are irrelevant. To take a
ial example, suppose we are required to synthesise the word
g”, but find we have no suitable units for that word. We do
ever have plenty of good units for the word “large”, and
could use those instead. The point is that linguistically the

ultant sentence is very similar, but is obviously quite differ-
acoustically. To consider a slightly more plausible example,
sider an input sentence which has a comma, indicating a
ase break, in the middle.

‘‘In recent years, the rate of progress
s slowed’’.

Let us assume that the text analysis module decides to place
hrase break after the word “years”. During synthesis we find
t we have no units of that type but we do have plenty of good
ts with a non-phrase final feature. We choose them instead
effectively synthesise

‘‘In recent years the rate of progress
s slowed’’.

Note that this will not sound the same as the version with
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Figure 1: The standard target-cost formulation projected onto a
perceptual space. Each unique feature combination lies at the
corner of a hyper-cube, which is a square in this case as we are
only considering two features.

STRESS
PHR FINAL

false

true

STRESS
PHR FINAL

true
true

st
re

ss

phrase final

1

10

STRESS
PHR FINAL

true
false

STRESS
PHR FINAL

false
false

2.1

Figure 2: The effect of applying weights to the perceptual space
is to scale each axis. Here phrasing has a higher weight than
stress which means that axis is scaled and any difference in
phrase values will result in a higher overall cots.

the phrase break: a listener could easily tell the difference.
None the less this choice of unit is perfectly acceptable in this
situation.

The issue of linguistic costs arises when we have a con-
siderable number of features in our system. Imagine in addi-
tion to the above costs, we have features describing emotion
and other effects. Now we can, as system designers, rank the
importance of the features. We might decide for instance that
making the message intelligible is more important that gener-
ating any specific emotional effect. Again, we are not trying to
bluff the listener into thinking that they really did hear the origi-
nal specification synthesised; rather we are prioritising what we
can synthesise and hoping that will do. These priorities can be
reflected in the weights the linguistic features are given in the
target cost calculation.

3. High-lever versus low level-features
We now turn to the issue of what features we should use for out
specification and units. In older diphone synthesis systems, the
norm was that the specification consisted of a list of diphones
each with a duration and an F0 value or values. There was no
need for a target cost as often there was no choice of unit; the
single instance was used and signal processing was used to ad-
just the pitch and timing. Hence the use of F0 and duration is
in line with the operation of the previous generation of systems.
The point of note is that it is often the case that the F0 and dura-
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values are generated by algorithms which make use of high
el features as input. Furthermore, these high level features
often exactly the same as those now used in the unit selec-
. This shows the proper way that we should then think about

se values. In a sense, they are a low level transformation of
same information that the high level linguistic features hold.
the case can be made that it is not necessary to have F0 and
ation generation algorithms as the information required to
erate these values is available to the unit selection algorithm.

This illustrates the basic dilemma when choosing features.
her we can use high level features which we have a high de-
e of confidence in, but which can be highly redundant, lead-
to spare data issues. Or, we can use lower level features

h as F0 values, which while compact, are often inaccurately
culated. There is no real right and wrong with regard to this
e, it very much depends on the database, quality of the F0

orithm and so on. Informally however, we believe that given
above points there is very little to gain from the explicit gen-
tion of F0 and duration and that systems which use just high
el features perform better.

4. Calculating target costs with weights
the Hunt and Black formulation, the target cost is calculated
summing a number of weighted sub-costs:

T =
PX

j=1

wjCj(sj , uij) (1)

ere P is the number of features and sub costs, sj is the value
the specification for feature j, uij is the value of unit i for
ture j and wj is the weight for that sub cost. While a variety
means have been proposed for training these weights, it is
rth noting that setting these weights simply by hand seems
produce very good synthesis [2]. It is possible that this is
ause weights set by hand incorporate the notions of acoustic
linguistic cost.

Equation 1 can be viewed as defining a perceptual space,
projecting each feature description into that space such that
can measure distances. Each feature is represented by its

n dimension in this space, so that the total number of dimen-
ns matches P , the total number of features. Each unique

bination of features lies on the corner of a hyper-cube of
ensionality P , and this is shown in Figure 3. By giving a

ture a particular weight, we are in effect scaling that axis by
t amount. As absolute distances are used, the total distance
ween two points is calculated by finding the nearest path that
erpendicular to the axes. The effect of adding weights is
wn in Figure ??.

A vital point about this target costs calculation is that it as-
es that all features operate independently. That is, the effect

t say a phrasing difference has on the overall cost is never af-
ted by any of the other features. This is a very strong claim,

not really supported from experience. A demonstration of
is that in this scheme, two different feature descriptions

l always have a non-zero distance. This contradicts what
know from above, namely that ambiguity is rife in speech
that there are frequent cases of different feature descrip-

s mapping to the same acoustics (and hence same sound).
long as a weight is not zero (which would imply that that
ture is irrelevant in every single case) then we can not make
of the power of ambiguity in this weight system.

To show a real example of this, example the simple feature
tem shown in Figure ??. It is well known that both phrasing
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Figure 3: The perceptual space as defined by the decision tree
method. Here the axes represent two of the cepstral coefficients.
The feature combinations lie in positions defined by their acous-
tic values.

and stress lengthen a phone and so the effect of add [+phrasing]
and [+stress] to a unit can be seen as somewhat similar. We
would therefore expect that the target cost function would give a
shorter distance between these values than otherwise. However,
we can see from Figure ?? that units with [+stress, -phrasing]
and [-stress, +phrasing] have in fact equal highest distance, and
furthermore this is exactly the same distance as that between
the combinations [-stress, -phrasing] and [+stress, +phrasing]
which we would expect to sound completely different.

5. Target costs and decision trees
An alternative to the Hunt and Black target cost formulation
is to use decision trees. Here the idea is to cluster units into
groups of a minimum size, and then link these to the features
by use of a decision tree which asks questions of the features.
This technique is inspired by state tying in automatic speech
recognition (ASR), and is indeed used by HMM synthesis sys-
tems such as Tokuda [5], as well as hybrid HMM/unit selection
systems of Donovan and Woodland [3] and pure unit selection
systems such as Black and Taylor [1].

In these schemes, there is no target cost per se; given the
features the decision tree selects a cluster, and all the units and
only the units within that cluster are used in the search. Modi-
fications to this scheme exist, where the units within the cluster
are weighted according to how close they are to the centre, or
where a back-off strategy is used to go back up the tree to in-
clude more units if a particular cluster is somewhat sparse.

It is not straightforward to compare this with the weights
method but our view is that in essence this method is effectively
equating the acoustic space (usually cepstral) with the percep-
tual space as previously described. In other words, there is no
need to define a separate perceptual space; the cepstral space
serves this purpose. As we can measure points in this space di-
rectly from data, then we have no training or defining of this
space to perform. Figure ?? shows that crucially this formu-
lation does not impose a requirement of feature independence.
The diagram shows that as the cost function can freely clus-
ter the data, feature combinations which sound similar can be
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ure 4: The difference between the decision tree and neural
work approach. The observed units sharing the same feature
bination are shown in clusters defined by the dotted lines.
an unobserved feature combination whose true value is X,
decision tree assigns a set of units according to the entire

ster from an observed feature combination. This is shown
the arrow. In the neural network approach, a value X̂ is

imated by the network and a new cluster, formed from the
rest N points, is drawn around this value, shown by the solid
. This means that the closest N observed units can be used,
ardless of whether they share the same features or not.

en low costs, regardless of how different the actual features
mselves are.

There are however potential problems with this approach,
ny of them stemming from the fact that the feature descrip-

we require has not been seen during training and so we have
se the decision tree to give us another model instead. It is

te common to end up with many millions of possible mod-
, of which only a few thousand have actually been observed
he training data. A further problem is that the tree partitions
data into clusters once, and these are fixed at run-time. Thus
en we need units for a feature combination unobserved in
data, we use the decision tree to give us a whole set of units

m a different feature combination.

Projecting linguistic descriptions onto an
acoustic space

re we propose a new algorithm that acts as a replacement
the decision tree. As such it does not use a weighted target
t per se, but selects units based on clustering criteria in the
ustic space.

We are trying to solve two problems; first we wish to handle
es where we only have a few units for a particular feature
cription. Secondly we wish to handle cases where there are
observed units for the feature description.

In both cases we make use of the idea discussed above,
ely that the target cost is really a measure of how similar
units sound, and if we have a unit of one feature description

t is similar to a unit with a different feature description then
can use that unit when the other set of features are requested.
oing this, we assume that cepstral distance is indeed a good

asure of perceptual distance.



For the low occupancy case, we build a similarity table for
every unit in the database. We first do a state alignment with
an HMM trained on the phones of that unit and then compare
and sum the total Euclidean distances for each state. For each
base type, we calculate the full matrix of costs between every
unit for that base type and every other unit. At run time, we
find the feature description we want from the specification and
pass the units that have that feature description into the search.
If the number of matching units is below a defined minimum
threshold, say 50, then we use the distance metric to pad the oc-
cupancy of that feature description. So for instance, if we have
10 units matching our feature description, for each of those 10
units we would find the closest 5 other units within the base
type, making 50 in total. The distance measures are performed
offline, but it is computationally trivial to pad the feature de-
scription classes, so this can be done offline or at run time.

For the unseen case, we can’t use the distances alone as we
have no existing units which we can use as a guide. Our solution
here is to create a function that maps from the linguistic space to
a point in the acoustic space, and use then perform the distance
measures to this point to find the nearest N units.

In principle any trainable function approximation algorithm
could perform this task. In our system, all the linguistic descrip-
tions are represented as binary features - this in fact is the same
formulation required to ask “questions” in decision tree grow-
ing. The idea is to learn the general influence of the features on
the acoustics with the hope of generalising to the cases where
we have unseen feature descriptions. While we cannot of course
be sure that an algorithm will do this correctly it is worth point-
ing out that while the features definitely do not operate inde-
pendently (as explained above) they do have certain regularities
with respect to their acoustic mappings, and this helps greatly
in the learnability of this function. For instance stressed units
are always longer and louder than their unstressed equivalents
and phrase final syllables are always longer than no phrase final
ones.

To perform this mapping, we used a standard back-
propagation neural network. Despite being somewhat unfash-
ionable these days, a neural network fits our requirements re-
ally quite well. In particular it is good at dealing with multi-
dimensional binary data, as in our case. Three neural networks
were trained, one for each state as determined by the automatic
alignment. Each network was trained on all the data for that
state, and to avoid the mapping being swamped by the phone
identity, the data for each state was normalised by using the
mean and variance as measured from all examples with the
same phone identity.All three networks had identical topolo-
gies, which comprised 38 input nodes (corresponding to the 38
binary features we happened to be using), 20 hidden nodes and
42 output nodes for the 12 cepstral coefficients, energy, F0 and
their delta and accelerations.

At time, when we encounter a feature description that was
unseen at training time, we use the trained networks to generate
three points (one for each state) in acoustic space. We then pro-
ceed as if these points represented a real unit, and we find the
nearest N units to these points and pass them into the search.
To test our system, we built a baseline system using the standard
decision tree method, and compared this with a system that was
the same in all respects, apart from the two additions just de-
scribed.

The improvements were slight but significant. Out of 20
test sentences, 14 were judged the same or equally as good,
1 was ranked better with the decision tree method and 5 were
ranked better with the neural network method. Significantly,
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n examination of the units chose, it was found that in 4 of
5 better cases, the neural network approach was choosing

ts which were not in the cluster used by the decision tree. In
er words, the decision tree had “pruned” these units and they
re no available to the search.

7. Conclusions
ummary:

1. It is important to separate the notions of acoustic, lin-
guistic and perceptual cost.

2. The target cost as traditionally formulated should be
thought of as a “sounds similar” measure, assessing
whether it is possible to substitute one unit for another
with minimal perceptual effect.

3. The weighted sub-cost technique effectively defines a
perceptual space, projects feature descriptions into it,
and provides a means of measuring distances within it.

4. The weighted sub-cost technique (no matter how the
weights are trained) restricts all sub-costs and features
to be independent. We believe this is too strong a con-
straint; as we know that features interact and a conse-
quence of this is that we can not use the ambiguity natu-
rally occurring in the data to our advantage.

5. While the decision tree method can make use of ambi-
guity (and in fact always does), the number of unseen
feature descriptions is very large and the clustering im-
posed by the tree can be overly crude.

6. Our new technique effectively defines a new cluster at
run time for every feature description, meaning that more
“fluid” partitioning of the space is possible.

Although our technique has shown improvement we believe
re is still significant progress to be made. In particular, we
uneasy about the use of the cepstral space to represent a per-
tual space. This may be true in some very low level psychoa-
stic sense, but this is not defendable in general. A possible

ution is to try to learn an additional hidden perceptual space
ich has the correct dimensionality and which reflects human
gements.
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