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Abstract
This paper presents a framework which can accommo-

date the two most widely used contemporary speech synthesis
techniques, namely unit selection and hidden Markov models
(HMMs). This is achieved by building a very general HMM
where we have a network of states, each representing a single
frame for a single unit. This network exactly mimics the be-
haviour of a unit selection system and is effectively memorising
the data as an HMM. From this, we can merge states in the net-
work so as to produce a synthesis system of any desired size.
The paper discusses this technique as well as a statistical for-
mulation of the join cost and a number of ways to represent the
acoustic observations of the states.

index terms speech synthesis, unit selection, hidden markov
models

1. Introduction
Our ongoing work is concerned with the formalisation of unit
selection speech synthesis into a fully rigorous general statisti-
cal framework. This paper present work on one aspect of this,
in which we have developed a generalised framework for both
unit selection and hidden Markov model (HMM) synthesis. Our
approach is effectively to expand the model topologies, distribu-
tions and training techniques for hidden Markov models, to the
extent that we can show that unit selection and the normal type
of HMM synthesis are special cases within our framework. The
reason for proposing this unification is that we can build many
more types of synthesizer within this more general framework,
and choose synthesis techniques based on the desired mix of
size, speed, naturalness and robustness.

2. Unit Selection Synthesis
The most popular unit selection algorithm is that proposed in
Hunt and Black [1]. The text analysis part of the system pro-
duces a specification, which will shall assume is a list of lin-
guistic items all from one base type, for example diphones,
phones or syllables. The operation of the algorithm itself is
independent of the type of base type used, so for purposes of
exposition we shall assume we use phones. The algorithm op-
erates on a database of units, where each unit is the same base
type as in the specification.

Both the specification items and the database units are de-
scribed by a feature description. At the very least this contains
the phone identity of the item or unit, in addition features such
as F0, phone context, stress and phrase position are also often
present. We can think of the base type as the primary identi-
fier and the features as the “fine detail” in the description of the
units.

In a well designed system, we can expect to have at least
one unit for every base type. Often we have more, such that we
have to choose which of the possible units to use for each item in
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specification. This is what gives the unit selection technique
name. We use the term model to refer to a collection of units
ich all share the same feature description. In general, the dis-
ution of units within models is extremely uneven; in many
es there are no units at all for a particular feature description
which cases we say we have an empty model. (This use of
term “model” will become clearer once we have looked at
M synthesis).

Unit selection works by considering the specification items
by one, assessing the suitability of the units which match

se base types (the candidates) and then picking these best
rall sequence. This corresponds to a global minimisation of
cost functions; a target cost which measures the “similar-
between a specification we have produced from out text-to-

ech engine, and a given unit in the database; and a join cost
ich measures how well two units will join together. Synthe-
is performed by finding the lowest cost path through the set
andidates using a dynamic programming algorithm.

3. Hidden Markov Model Synthesis
den Markov model (HMM) synthesis [4] has been around
nearly as long as unit selection, but has gained considerably
ntion recently due to the increased speech quality of the best
M systems.

At first glance, HMM synthesisers seem very much like
M speech recognition systems, only used in reverse. A typ-

l system has three states per phone, uses mel-scaled cepstral
fficients (MFCCs), their delta and acceleration coefficients,
uses context based models with tied states determined by

ision tree clustering. One major difference however is that
e have to take prosody into account, we have to use a much

ader definition of the notion of “context” in our models. In
unifying scheme, we can generalise the idea of HMM con-

t into one of feature description so that we have one model
each unique feature description. This can result in many
lions of potential models, of which only a few thousand will
e been observed in the training data.

Synthesis is performed by generating a sentence level
M using the individual model HMMs that match the speci-
tion. If a requested feature combination was unseen during
ning, the “next best” model is selected by means of the deci-
n tree. Using the sentence level HMM, we next generate the
st likely sequence of observation frames. At its simplest, this
uld just correspond to the means of each state, and as such
uld not produce particularly good speech. The key “trick”
he HMM synthesis is to make the observations obey the im-
d state dynamics given by the delta and acceleration coef-
ents. Firstly, this ensures that within a model the trajectory
a particular coefficient is nearly always continuously evolv-
; no coefficient jumps at state boundaries are seen. Secondly,
se same dynamic constraints are applied at the state transi-

between phone models, thereby ensuring smooth phone-
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to-phone transitions. This is particularly clever and avoids any
notion of join cost in HMM synthesis.

4. Comparing the approaches
In “pure” unit selection synthesis; we make no deconstruction
of the waveform; no signal processing is used in generation and
synthesis is performed by stitching together waveform samples
from a large inventory using the search algorithm. This is the
strength of the approach; if we consider natural recorded speech
as being perfect, then the less we manipulation we perform the
less degradation we will impose, with the result that highly nat-
ural speech should be generated.

The main problem with unit selection synthesis is that it
is in some sense inherently “fragile”. When we have the units
we want the synthesis can sound excellent, but it is a matter of
chance whether we do, and if we don’t the speech can degrade
by an arbitrary amount. Likewise with joins; often the joins
are completely imperceptible, but occasionally no good join is
possible and poor speech results. These problems are funda-
mental to the technique. In addition, we have the “unsolved”
(as opposed to “unsolvable”) problem of training. While a huge
number of training techniques have been proposed, none is per-
fect and most researchers would agree that there is considerable
room for improvement here. Finally “pure” unit selection by
its nature is expensive in terms of storage as we are required to
store every database sample. Even with the best compression
techniques, the size of such a database can be considerable.

HMM synthesis gets around many of these problems. The
models used to generate the speech are inherently more robust
as they have been trained on a representative number of exam-
ples. The training is automatic and based on sound mathemat-
ical principles (statistics), and because only a few hundred pa-
rameters are required for each model, the memory requirements
can be orders of magnitude lower.

For systems where space is not a problem and for which
there is plenty of training data, unit selection generally sounds
much better. This is because the robustness comes from the sta-
tistical averaging that occurs during training and hence HMM
synthesis is always in some sense “playing it safe”. It is con-
strained to generate from the feature representation it is using
(often MFCCs + f0) and because of this and the statistical na-
ture of the generation often much of the fine detail of real speech
is not synthesised adequately.

5. Unifying the approaches
At first glance; these seem to be completely different technolo-
gies; one based on stitching samples and using costs, the other
based on statistics and generalisation. Putting aside trivial dif-
ferences in terminology and so on, we see that in fact there are
three main differences in the systems; namely model topology,
acoustic representations and training techniques.

5.1. Model topologies

To show the general equivalence of unit selection and HMM
synthesis, let us for sake of demonstration use the same sig-
nal processing approach for both. While “pure” unit selection
uses unprocessed raw waveforms, many techniques use slightly
more complicated representations, where for instance we have
frames of waveforms (allowing PSOLA-like operations), LPC
representations (allowing separate source and filter modifica-
tions) and so on. Hence there is nothing in the unit selection
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observation densities

ure 1: Full state HMM. Every unique path represents exactly
unit in the training data. Only the first three paths and the

ervation probabilities for the first path are shown in the dia-
m. In reality all states have one observation density and all
ts have one path.

hnique per se than insists we use waveforms. It is therefore
ightforward to use the most popular HMM representations,
ely MFCC + F0 in unit selection. Everything else is the
e, but now the units pass on a sequence of MFCC + F0

mes to a simple signal processing module which generates
final waveform. Some quality is lost in this process and the
ech becomes slightly buzzy but as we shall see this is not the
y option for HMM synthesis and we shall return to the signal
resentation below.

Now let us consider the case of a feature description for
ich we have N matching units in our database. Each unit can
represented as a sequence of frames, and in turn we can de-
t this as a series of states, each corresponding to exactly one
me. The states are configured in a strict left to right topology,
h no looping or skip states. If we now add a dummy state at
beginning and ends of each sequence, we can join at this

nts to construct a single network in which we immediately
nch in one of N paths after the first state, follow that path to
end and then come back to a final end state. This is shown
igure 1.

This network can be converted to a hidden Markov model
converting it into a statistical representation. First we assign
robability to each arc. For all except the first state this is
as there is no branching and only one path can be followed.

e first state has N branches and so the probability for each of
se is just 1/N .

The MFCC + F0 frames associated with each state can be
verted into observation probabilities with a mean and covari-
e. In each case, the mean is simply the values of the states.

a strict maximum likelihood sense we should set the covari-
es to be 0, as the state emits just exactly this and no other
ervation, but for practical purposes we set the covariances to
some small amount so as we can give some non-zero proba-
ty to any observation. As is common in HMM systems the
r statistical independence of the MFCC parameters allows
to use diagonal covariances only.

We now in effect have an HMM formulation which will
erate exactly the same speech as the unit selection system.
ther words, the network has “memorised the data”. The only
erence between this and the standard synthesis HMM is the
work topology with its much larger number of states.



observation densities

Figure 2: Example of how an HMM may look after four merg-
ing iterations.

5.2. Modifying the topology of the HMM system

We can now start to build a more general HMM from this “full
state” HMM. This is done by a process of merging states, per-
formed as follows.

1. Examine every possible pair of states and for each pair:

2. merge the two states into one new state such that:

(a) the mean of the new state is the mean of the means
of the old states

(b) the variances are added

(c) the transitions are combined so that the topology
for the rest of the network is unchanged.

3. Recognise the training data using the Viterbi algorithm
and record the likelihood

4. Choose the pair which produces the smallest decrease in
likelihood.

5. Repeat this process until the stopping criteria is met.

In effect, we are seeking to merge the two most similar
states, and we measure this by finding the network which gives
the maximum likelihood of generating the training data. In
other words, we are reducing the size of the network by one
state, and examining all possible ways of doing this until we
find the one that gives the maximum likelihood for the training
data.

We can continue this process as far as we wish; in effect ev-
ery time we merge two original states we are producing a prob-
ability density which summarises these two states: unlike the
original case where we set the variance to 0 or some arbitrary
small value, the merged states now have a “real” variance. In
each iteration, the topology of the network changes. Loop and
skip states (where a outgoing transition is made to the same,
next or previous state) occur when two states in sequence are
merged.

5.3
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. Stopping Criteria

can stop the merging process at any stage; it should be clear
t as we are starting with a model that has exactly memorised
training data the likelihood is always getting worse every
e we merge two states, and so there is no objectively defined
pping point with respect to that. We could use model size;
r all one of the main motivations may be to reduce the size

the unit selection database, and if we know in advance how
the required database should be then we can keep merging

il that size has been achieved.

It is of course possible to keep on merging until we have the
ssic three state looping HMM; this is of course an expensive
y to do this as we could have just started with this topology in
first place. The advantage of our technique is that any model

e between the single frame-state model and the classic 3 state
M can be created.

6. Calculating Join Costs via Frame
Sequence Probabilities

re we introduce the frame sequence probability algorithm,
eans of replacing the traditional join costs by a purely statis-
l method. The join cost is normally not used in HMM syn-
sis; the models are simply concatenated and the trajectory
eration algorithm is used to create smooth transitions across
s. One can argue that this is in fact divergent from the ASR
M paradigm where there is a language model which deter-
es probabilities between larger units. Exploring this idea,
have developed a purely statistical way of calculating the
“cost” (because it is statistical it is not longer a cost). This
be used in the model we have just developed, in normal
M synthesis and even in pure unit selection synthesis.

While we can of course just use the standard HMM formu-
on and leave all join issues to the trajectory algorithm, our

join model seeks to provide a genuine probability that one
tion of speech will follow another. In doing this, we remove
dummy start and end states from all the models and join

ir real start and end states in an ergodic fashion. That is,
e have a model Am with M real final states being joined

a model An with N real starting states, we construct a full
× N transition matrix at the boundary, and assign probabil-
s to each transition.

The normal way of calculating an acoustic join cost is to
pare the frame at the end of the first unit with the frame of
second unit, and take use similarity measure to judge the
ree of fit. Our approach is different and is based on the idea

studying naturally occurring sequences and using those as a
del for what should constitute a good join.

Our probabilistic formulation is based on calculating the
t probability, P (O) = P (o1, o2, o3, ..., oM ), that a se-
nce of frames will occur. If we consider the probability of
erving a frame of speech given all the proceeding frames we
use an approximation to this where we consider only the

vious N frames. In its simplest form, we calculate this over
frames only:

P (O) = P (o1, o2, o3, ..., oM ) ≈=

MY

i=1

P (oi|oi−1)

ich can then be added into the network as the probability on
arc between the last state of the previous model and the first

te of the next.



The attractive part about this formulation is that these prob-
abilities are easy to train; in fact, all we have to do is study the
sequences of naturally occurring frames in our training data and
use this. Furthermore, we do no have to limit ourselves to units
which occur in join locations; in fact we use all the frames in the
entire corpus to calculate these probabilities. This is taken from
the observation that every single naturally occurring frame in
the database is a perfect join with its naturally occurring neigh-
bour.

The specific formulation we use is in fact the same as the
language model formulation in ASR. That is, we use a non-
parametric model which simple counts (with smoothing) the oc-
currences of particular frames in sequence with other particular
frames. We can only use this formulation with discrete entities,
so as a first stage we vector quantise all the frames in the cor-
pus. This gives is a codebook of “words”, from which we then
map the acoustic sequence o1, ...oM to give a “word” sequences
w1, ..., wM . From this it is then possible to count occurrences.
As in language modelling, a back-off model is used to ensure
that non-observed sequences have some small probability.

This formulation has a number of advantages over the usual
acoustic join cost distance. In that, only frames which are
acoustically similar get a low cost, but in real speech there are
times when the spectrum is evolving very quickly, so that suc-
cessive frames are quite different, but still entirely natural. The
statistical formulation accounts for this and allows big acous-
tic differences across joins so long as that behaviour has been
observed in the training data. Secondly, this technique is com-
pletely automatic, and doesn’t rely on setting weights by hand
or finding a space that is we hope is perceptually accurate.
With care, it should be possible to train this model on virtually
any speech database (not just the particular one being uses for
synthesis), as we expect the evolution patterns to be common
across all speech. The above model was estimated with about
1,000,000 data points (frames) but it should be possible to build
more robust models that have longer contexts and bigger code-
books as we potentially have access to many thousands of times
more data.

To evaluate this new technique we performed a simple test
giving listeners pairs of utterances, where one utterance was
synthesised using an acoustic distance measure and the other
the new technique. In both cases we used MFCCs + F0 as the
acoustic representation with delta and acceleration coefficients
calculated also. The listeners were asked to say which version
they preferred. In 38% of the cases the new technique was pre-
ferred, as against 12% for the old technique and 50% which had
no preference.

7. Acoustic representations
For demonstration purposes, we used the representation most
commonly use in standard HMM synthesis, namely MFCCs
with F0. From this we can generate speech using the algorithm
described in Imai [2]. The speech generated in this way has
often been criticised as being somewhat buzzy, and this comes
from the lack of an accurate source representation in all such
models.

In fact we can accommodate nearly any type of acoustic
representation in the observation densities and so far we have
tried waveforms, magnitude spectra and full cepstra. In the full
state HMM, all of these representations can be easily accomo-
dated, but as we start to collapse states we find that certain rep-
resentations are easier to model than others, mostly arising from
issue of whether full or diaogonal covariances can be used. In
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full state HMM, we can generate waveforms from the state
ans alone, and even after a few state merges this is still pos-
le. However as we use fewer states, eventually the classic
M synthesis problem arises where we start to generate one

tic section of speech, which then jumps to a different static
tion of speech as we move from one state to another. At this
ge, the dynamic HMM synthesis algorithm of Tokuda et al
has been can be applied. We are still investigating whether
algorithm should be applied for all HMM topologies, in-

ding the full state case.
Our preferred measure is the normal, full cepstrum (i.e.

hout mel-scaling). Rather that smooth the DFT or discard the
her cepstral coefficients (the normal practice in ASR) we use
full cepstrum, as this retains the detailed source information
therefore allows us to accurately recreate the original wave-

m. This in general sounds better than waveforms generated
MFCCs and an F0 value, but requires many more parame-
. To model this type of cepstrum, we perform a separation
ere we split the cepstrum into two streams, with the first hav-
the spectral envelope MFCC representation as before, and
second having the higher part of the cepstrum representing
source information. Experiments have shown that a diago-
covariance matrix is not directly appropriate for this second
am, and current work is investigating the use of transforms
educe the dimensionality of this source component so as to
w diagonal covariance modelling.

8. Conclusions and Further Work
e main findings in this paper are:

1. It is possible to reformulate unit selection synthesis
within a generalised HMM framework.

2. This allows us to build to a fully scalable synthesiser

3. A number of acoustic representations for the observation
densities are possible

4. It is possible to reformulate the join cost in unit selection
as a transition probability between models, and train this
on unlabelled sequences of naturally occurring speech.

Along with the target cost formulation described in [3],
se techniques can be used to constitute a fully formal sta-
ical speech synthesis framework that can encompass many
he unit selection and HMM synthesis techniques used today.
ere is considerable scope for further work, in particular in
areas of the join cost probability calculation and the acous-

representations of the states.
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