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Abstract
Recent research suggests that modeling coarticulation in

speech is more appropriate at the syllable level. However, due to
a number of additional factors that can affect the way syllables are
articulated, creating multiple acoustic models per syllable might
be necessary. Our previous research on longer-length multi-path
models has proved that data-driven trajectory clustering to be an
attractive approach to derive multi-path models. However, the use
of single distribution with unvarying covariance to model a trajec-
tory cluster may degrade its capability of detecting pronunciation
variants. In this paper, we propose a new method, namely path
mixture hidden Markov model, to alleviate the adverse effects of
trajectory clustering. The improvement on performance observed
in continuous speech recognition experiments show path mixture
model is a very effective approach.
Index Terms: continuous speech recognition, trajectory cluster-
ing, syllable-length model, path mixture HMM.

1. Introduction
Coarticulation introduces long-term spectral and temporal depen-
dencies in speech. To model these dependencies in ASR, the use
of longer-length acoustic models, based e.g. on syllables, has been
proposed. However, most languages have several thousand sylla-
bles, and many of these syllables, corresponding to words which
are not frequently used, will have poor coverage in the training
data. As a consequence, several authors have proposed the mixed-
unit model, which mixing syllable models for frequent syllables
with conventional triphone models or bootstrapping longer length
units from the sequence of constituent triphones [1] – [5].

However, it is unlikely that long-term coarticulation is the
only, or even the most important, source of variation in triphone
models. Also for syllable-length models it holds that part of the
variation is due to factors such as the neighboring syllables, the
presence or absence of lexical stress, the speaking rate, etc. More-
over, analyzing manual transcriptions of speech makes it obvious
that syllables are frequently realized as many different phoneme
sequences. Therefore, it is not a priori evident that acoustic obser-
vation densities of syllable models will model the most important
sources of variation more accurately than triphones do - in par-
ticular if the syllable models are bootstrapped from a sequence of
triphones, without adapting the model topology. This may explain
why reports on the performance of syllable models in ASR have
come to contradictory conclusions [4][6].

One way to tackle this problem is building multi-path sylla-
ble models with parallel HMMs topologies. In previous work [7],
we developed a data-driven method, namely Trajectory Clustering
(TC), to build multi-path parallel model topologies, and success-
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applied it to the 94 most frequent syllables for continuous
h speech recognition. In this approach, speech observations
egarded as continuous trajectories along time in acoustic fea-
space, and clustered based on mixtures of regressions of these
ctories [8]. Each trajectory cluster is modeled as a prototype
nomial function with some variability around it. The variabil-
ithin the clusters is described in term of a mixture of Gaus-

s. The EM algorithm is employed to train the cluster model
Maximum Likelihood manner. With the results of trajectory
tering, multi-path models can be trained based on the training
ns in different clusters.
When using TC based multi-path models, some other prob-
arise. First, in clustering variable-length sequences data, TC

ore effective than for example Mixture of Hidden Markov
els [9], in discriminating different evolutionary patterns or
es of speech trajectories, because a continuity constraint is

osed on consecutive frames. However, TC assumes that all to-
in a cluster of trajectories are drawn from a single Gaussian,
a equal covariance for all frames. This assumption might not

o realistic, given the fact that the frames in a speech trajectory
not be equally informative. In Mixture of HHM clustering,

problem is tackled by using state-dependent covariances. The
M state with relatively smaller covariance contribute more to
overall probability in computing the distance between speech
ctories and cluster templates. Thus, the questionable assump-
made in TC may deteriorate the discriminability of pronun-
on variants. Second, in large vocabulary continuous speech
gnition the multi-path models for a single syllable will in-
se exponentially the searching load.
In this paper, we propose a novel method, namely path-
ture Hidden Markov Models, to alleviate the adverse effects
at the same time reap the benefit of the TC-based multi-path
oach. The paper is further organized as follows. Section 2 de-
es the theoretical framework of the TC approach and of path

ture model. The experiment deigned to test the approach and
esults are presented and discussed in Sections 3 and Section 4.
lly, in Section 5, we summarize the most important findings
draw conclusions about the implications for future work.

2. Method

Trajectory Clustering

C, speech realisations are assumed to be drawn from several
ponents of mixture Gaussians, where the mean of each compo-
density is a polynomial function of time. For speech realiza-
j with a length of Nj frames, the matrix form of the regression
tion for component k in D dimensional acoustic feature space
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can be written as

Yj = Xjβk + Ek (1)

or:
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Yj is the feature vector matrix, which is Nj × D; Xj is an
Nj × (p + 1) matrix whose second column contains the frame
numbers corresponding to the feature vector in Yj , and p is the
highest order of the regression model, in our case p = 3; βk is
a matrix of regression coefficients; Ek is Nj × D residual error
matrix which is assumed to be zero-mean multivariate Gaussian
with covariance matrix Σk.

Since the speech trajectories that we will be dealing with have
different durations, we normalize the trajectories to unit length by
dividing the frame numbers in the second column of Xj by Nj−1.
In [7], we found that this way of handling different durations yields
the most coherent clusters.

With the standard regression assumption that the error is con-
ditionally independent at different x points along the trajectory, the
probability that a complete trajectory is generated by component k

is:

P (yj|xj , θk) =

NjY
i

fk(yj(i)|xj(i), θk) (2)

Here, θk includes both the parameters of the regression model
βk and the covariance matrix of regression residual Ek. Once
P (yj |xj , θk) is computed for all K components, the membership
probability hjk , which corresponds to the posterior probability that
trajectory yj(i) is generated by component k, can be expressed as:

hjk =

wk

NjY
i

fk(yj(i)|xj(i), θk)

KX
k

wk

NjY
i

fk(yj(i)|xj(i), θk)

(3)

in which wk is the weight of the mixture densities. The trajectory
will be assigned to the component yielding the highest member-
ship probability.

With this notation, the re-estimation equation for the EM al-
gorithm can then be defined as:

β̂k = (X′

HkX)−1
X

′

HkY (4)

Σ̂k =
(Y − Xβ̂k)′Hk(Y − Xβ̂k)PM

j
h∗

jk

(5)

ŵk =
1

M

MX
j

hjk (6)

where Y = [Y′

1 . . . Y′

M ]′ and X = [X′

1 . . . X′

M ]′, so
that Y contains all the feature vectors of the data set, one segment
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(a) Separate Path Model

(b) Path Mixture Model

(c) Alternative view of Path Mixture Model

re 1: Model topologies for Separate Path Model and Path Mix-
Model.

another, corresponding to the frame numbers in X. Hk =
([h∗

1k . . . h∗

Mk]), where h∗

jk is a row vector consisting
j copies of the membership probability hjk. The estimated

meters are then used to compute new values of hjk for the
step in the iteration. This iterative re-estimation procedure is

ated until convergence is reached.
The EM algorithm is highly sensitive to the initial values of the
el parameters. We tackled this problem by using a procedure
hich the number of clusters is increased incrementally until

required number of clusters is reached. Since the shapes of
trajectories are contained in the sequence of MFCC vectors,
id not include delta or delta-delta coefficients in the syllable

esentations that were used as input to the clustering procedure.

Path Mixture Hidden Markov Model

the results of TC, multiple HMM paths for a speech unit can
ained, based on the training tokens in different trajectory clus-
The multi-path models are integrated in the lexicon as alter-
e pronunciations of the words that contain this speech unit. In
ding, the paths have equal prior probabilities. We refer to this
el topology as the separate path model. An example model
logy with two HMM paths is illustrated in Figure.1(a).
In the path-mixture model, the TC-based separate HMM paths
ombined into one entity by recruiting two non-emitting states
Figure 1(b)). By doing so, the multi-path model can be re-
ed as a single speech unit rather than alternative pronuncia-
s. This should decrease the searching load in decoding. For a



given observation sequence Y, the probability that Y is produced
by the model is given as

p(Y|Λ) =

HX
h=1

whp(Y|λh) (7)

where wh are the mixture weight, subject to
PH

h=1
wh = 1, indi-

cating how likely the hth path will be chosen. λh implies a HMM
path, and Λ is the parameter Λ = {wh, λh}(h = 1 . . . H). By
analogy with the conventional HMM, the Maximum Likelihood
estimate is given as:

Λ′ = argmax
X

h

whp(Y|λh) (8)

To estimate the model parameter Λ′, a Baum-Welch re-estimation
procedure can be directly applied, if we regard path mixture model
as a single HMM chain (cf. Figure 1(c)).

The difference between path-mixture model and separate path
model is not only the additional weights for parallel HMM paths,
but also the way we train them. For separate path model, the HMM
paths are trained by using separate sets of tokens corresponding to
the trajectory clusters, whereas all the tokens are used to train path-
mixture models. Thus, the training of the path-mixture model is
equivalent to clustering the tokens again as in the Mixture of Hid-
den Markov Models approach, but now with the initialization of
the parameters obtained from TC-based multi-path models. We ex-
pect that the re-clustering procedure can reap the benefit from the
varying covariance property of Mixture of Hidden Markov Model.
Moreover, since the segmentations of training tokens are obtained
from the force-alignments of single-path models, we also expect
this re-clustering based on Baum-Welch algorithm can fix the clus-
tering error caused by segmentation faults.

In decoding, the Viterbi algorithm can also be directly used in
path mixture models. It should be noted that in decoding when a
search path begins with a state in a HMM path, it will end in the
same HMM path, thus avoiding the trajectory folding problem [7].

3. Experiments
3.1. Speech Material

The speech material was taken from the Spoken Dutch Corpus
(Corpus Gesproken Nederlands; CGN) [10]. For this study we
used speech from 166 females reading books for the library for
the blind. The training, development and test sets comprised non-
overlapping fragments of all 166 speakers.

Feature extraction of the speech material was carried out at
a frame rate of 10 ms using a 25-ms Hamming window. A pre-
emphasis factor of 0.97 was employed. 12 Mel Frequency Cepstral
Coefficients (MFCCs) and log-energy with corresponding first and
second order time derivatives were calculated, for a total of 39
features. Channel normalization was applied using cepstral mean
normalization over complete recordings, which were chunked to
sentence-length entities for the purpose of further processing.

3.2. Speech Recognition

In this work, we built multi-path models for the 94 most frequent
syllables. We designed experiments to compare the performance
of 1) a mixed-unit system [5] with a single path for each syllable
model, 2) with 2-path separate model based on TC for each sylla-
ble, and 3) with 2-path mixture model for each syllable.
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The 94 context-independent syllable units of the single-
mixed-unit recognizer were initialized with the 8-Gaussian
one models corresponding to the constituent (canonical)
emes of the syllables. The mix of units underwent four passes

mbedded re-estimation.
To build the separate path recognizer, we clustered the train-
tokens of each of the syllables into two clusters. The 2-path
ble models were initialized with the same 8-Gaussian single-
syllable models and re-estimated with separate sets of training
ns obtained trough TC. Since we did not find systematic rela-
s between trajectory clusters and syllable duration, we decided
eep the number of states in the separate paths equal to the sum
e constituent triphone models.
Based on the separate-path models, the 2-path mixture of
Ms models were built. We used the parameters of the separate-
models to initialise the mixture models, starting with equal

ture weights for the two paths. The path-mixture models then
rwent four passes of Baum-Welch re-estimation.

e 1: Speech recognition results for mixed-unit recognizer,
ti-path mixed unit recognizer and path mixture model recog-
r.

Recognizer Type Word Error Rate Time

mixed-unit 9.41% ± 0.5% 12 hours
2-path mixed-unit 8.70% ± 0.5% 24 hours
2-path mixture model 8.45% ± 0.5% 14 hours

Table 1 illustrates the recognition results and the time needed
decoding a test data set with 1,098 sentences consisting of
27 words. From the table it can be seen that the recogni-
performance for the 2-path mixed-unit recognizer is signifi-
ly better than the single path mixed-unit recognizer. This re-
confirms that although syllable models are capable to model
-term dependencies in ASR, there are other sources of varia-
that are more important to model [6]. By applying multi-path
els based on data-driven trajectory clustering, the most impor-
variation is accounted for in the separate models and this leads
proved performance. The performance for the path-mixture

gnizer is substantially better than the separate-path recognizer.
eover, the searching load in decoding for the path-mixture
gnizer is approximately halved compared to the separate-path
gnizer.

4. Discussion
rder to investigate the impact of applying path-mixture models
apt TC-based multi-path models, we performed forced align-

t of the training tokens with both the original models and the
ted models. Part of the results are illustrated in Table 2. For
syllable, we calculate the token migration rate, which indi-

s the percentage of training tokens aligned to a different path
dapted models than in the original TC clusters, and segmen-
n difference, which is the average number of frames that are
rent between the two alignments. These results are sorted with

rence to token migration rate.
From able 2 it can be seen that the average segmentation dif-
nce for all syllables is less than 1, which indicates that the
types of two-path models are trained with essentially the same
es. The token migration rates differ considerably between the
bles. This results suggest that after adapting the TC-based



Table 2: The results of the forced-alignment of training token with
both separate-path models and path-mixture models

Syllable Token Migration Segmentation Difference
/I n/ 15.16% 0.56
/I s/ 14.35% 0.73
/ui t/ 14.18% 0.63
/s @/ 13.87% 0.51
...

...
...

/d A n/ 1.07% 0.44
/e n/ 0.90% 0.80
/s t @/ 0.35% 0.41
/t @ x/ 0.31% 0.67
Overall 6.30% 0.63
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Figure 2: The means and variance of HMM states for both
separate-path model and path-mixture model of syllable /t @ x/.

models, the parameters in some of the original models are substan-
tially changed. In Figures 2 and 3, we compare the model parame-
ters between the separate-path model and the path-mixture model
of syllable /I n/ (with maximum token migration rate) and /t @ x/
(with minimum token migration rate), by plotting the means and
variances of the states in the HMM paths of the first MFCC coef-
ficient.

In Figure 2(a) we can see that the evolution of the means in
two HMM paths that are substantially different. Since the HMM
paths are trained using different trajectory clusters, this shows that
TC is very effective in discriminating variants of speech trajec-
tories with different forms. From Figure 2(b) it can be seen that
the model parameters in the path-mixture model remain approxi-
mately unchanged. Combined with low path migration rates, this
suggests that applying path-mixture models will not obscure the
shape differences between speech trajectories uncovered by TC.

In Figure 3(a) we can see that two HMM paths are approxi-
mately parallel. This outcome implies that TC did not find a good
split of trajectories corresponding to different patterns (explaining
the high migration rate in Table 2). Because of the identical co-
variance matrices, the TC clustering results in two parallel cluster
prototypes. However, since the variance in the boundary states
is larger than in the central states, the central states are more im-
portant. Thus, after adapting the boundary states overlap almost
completely, but the separation of the states in the middle of paths
remained (cf. Figure3(b)).

5. Conclusion
In this paper we address the problem that single distributions with
common covariance in TC-models sometimes is inconsistent with
reality, and may degrade the power of uncovering the underlin-
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re 3: The means and variance of HMM states for both
rate-path model and path-mixture model of syllable /I n/.

pronunciation variants. This problem can be partly alleviated
dapting the original models with a re-clustering procedure by

eans of Mixture of Hidden Markov Models. To this end, we
y a more flexible model topology to TC-based model. This
logy allows adapting the original models by the means of
m-Welch re-estimation, resulting in path-mixture HMMs. A
gnition experiment showed that path-mixture HMMs outper-
TC-based models.
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