
ABSTRACT

The current speech interfaces in many military applications 
may be adequate for native speakers. However, the
recognition rate drops quite a lot for non-native speakers 
(people with foreign accents). This is mainly because the
non-native speakers have large temporal and intra-phoneme
variations when they pronounce the same words. This
problem is also complicated by the presence of loud
environmental noise such as tank noise, helicopter noise, etc.
In this paper, we proposed a novel speech feature adaptation 
algorithm for continuous accent and environmental
adaptation. This feature-based adaptation method is then
integrated with conventional model-based maximum
likelihood linear regression (MLLR) algorithm. Extensive
experiments have been performed on the NATO non-native
speech corpus with baseline acoustic model trained on native
American English. The proposed feature-based adaptation 
algorithm improved the average recognition accuracy by
15%, while the MLLR model-based adaptation achieved
11% improvement. The combined adaptation achieved
overall recognition accuracy improvement of 29.5%, and
word error rate reduction of 31.8%.

Index Terms: Non-native speech recognition, feature
adaptation, model adaptation, accent and speaker adaptation

1 INTRODUCTION: SVD FOR SPEECH 
RECOGNITION

The mainstream acoustic features used for speech
recognition is Mel Frequency Cepstral Coefficients (MFCC),
which are obtained by taking the Discrete Fourier Transform 
(DCT) of log spectrum. It is well known that SVD projection 
results in the most informative subspace of all possible
projection. While DCT uses constant transformation
coefficient, the SVD needs to be trained from data and thus 
is sensitive to the training data acoustic characteristics. In 
this section, we first review the SVD technique and discuss 
the issues of applying it to speech recognition under
mismatch condition; then we propose a continuous feature 
adaptation algorithm and its implementation by incremental 
SVD algorithm.

 Given an d n×  data matrix M  of rank r  (where we 
assume, without loss of generality, that d n> ), the SVD 
decomposes is given by [1]
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( ) ( ) ,  min( , ),1
TU diag s V r d nr nrn d r→ ⋅ ⋅ ≤××× (1)

e U  and V  are unitary matrix, ( )diag s  is an r r×
onal matrix. The columns of U  represent the
nvectors” of M  and represent a set of r orthogonal 

s, and diagonal entries of ( )diag s , termed the “singular 
es” of M, represent the scatter of the projections of the 
mns of M along the direction of these bases. SVD is 
 used to reduce the dimensionality of high-dimensional
ices. For instance, M may be reduced to a k n×  matrix 
y projecting the columns of M the K columns of U that 
spond to the K highest singular values in S

( ) ,  ,TM U M k dKk n d n= <× ×
� (2)

e U UK d k= ×  is a matrix constructed from the K
mns of U that correspond to the K highest singular 
es.

ensionality reduction by SVD is frequently used in
ch recognition systems to de-correlate and project high-
nsional log-spectral vectors down to lower-dimensional
trum like feature vectors [2]. In order to do so, a large 
ber of log-spectral vectors of a training data set are
ged in a matrix M, and the K-dimensional projection 
ix UK is derived by singular value decomposition of M.
roblem arises when test data to be recognized are
rded in a different acoustic environment than the
ing data. In this case, the unitary projection matrix UK is 
nger guaranteed to be the most informative projection, 
ting in a loss of crucial information in the test data, with 
equently lowered recognition performance. Independent 
ctions cannot be derived for the test data since these 
ctions may not conform to the original projections of 
training data – in the worst case the independently
ed projections from the test data might project them
an entirely different K-dimensional subspace from the 
ing data. It therefore becomes necessary to identify a 
projection matrix U'K that de-correlates the test data 
ly with the training data along the most informative
tions.

CONTINUOUS UNSUPERVISED FEATURE
ADAPTATION

eveloped a feature adaptation algorithm to continuously 
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modify the incoming features to conform to the expected
distribution of the training data. It composed of three steps: 
1) train a transformation matrix from training data using 
principle component analysis (PCA); 2) adapt the
transformation matrix by including current testing data using 
incremental SVD; 3) transform current testing data using 
this new transformation matrix. The continuous feature
adaptation algorithm can be formulated as follows

Initialization
Initial transformation matrix, 1T A− = , is computed from

SVD of training data, i.e., the MFCC feature vectors.

For t=0:T (on testing feature vectors)
( ( , ), )1T Update Downdate T X Xt t t tτ= − −      (3)

(1 )H A Tt tγ γ= + −                                  (4)

,t t tY H X=             (5)
where

tX is the original testing feature vectors;

tY  is the transformed testing feature vectors to be fed to 
the speech recognizer;

( , )T Update T X=
�

, is the function to update the
transformation matrix T to include a new feature vector X;

( , )T Downdate T X=
�

 is the function to update the
transformation matrix T to delete a history vector X;
τ  is the "memory window" within which data vectors 

contribute to the current transformation;
0 1γ≤ ≤ is a contribution tradeoff between training and 

current testing data;
tH  is the effective adaptation matrix used at time t.

It is critical to initialize the matrix A  appropriately. In our 
current work, the initial value of A  was determined using 
data from a group of typical Native American data with 
accents, since our focus is on accent robustness. 

As with other transformation-based algorithms, the
algorithm is not specific to a particular type of acoustic
condition and is equally effective in adapting to variations, 
both local and global, in noisy conditions, speaker and
accent variations. Since the algorithm is performed directly 
on incoming acoustic data and needs no transcriptions, it is 
completely unsupervised. Furthermore, since transformation 
matrices are computed in an incremental and causal manner, 
the algorithm is well suited to run-time implementations.

 Unlike current transformation-based data normalization
algorithms [3], the transformation that is applied to each
incoming vector is unique, since it is estimated causally
from the entire sequence of incoming data vectors up to and 
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ding the current vector, but not including any vectors 
er downstream. The effect of such a transformation is 
old: 1) it projects the incoming test data into the same 
n of the data space that the training data are expected to 
thereby increasing the probability of correct

ification; 2) by normalizing the test data, it facilitates 
r model adaptation technique, as the transformations
 no longer account for data spread over a large region of 
data space, resulting in improved recognition with
formed models. Since each vector is transformed
uely, the effect of the data transformation is effectively
linear and is not equivalent to a single global affine 
formation.

ct implementation of such SVD projection-learning
anisms is, however, infeasible since it would require 

the entire training data (or at least, sufficient statistics
 it) in conjunction with the test data in order to
mine the new projections. In our work we circumvented 
problem by adopting the incremental SVD algorithm
osed by Brand [4].

incremental SVD problem can be briefly stated as
ws: given the SVD decomposition U, S, and V of a dxn
ix M and a new dxc matrix C, the goal is to obtain a new 
 matrix U ′′  that jointly de-correlates matrix [M C]
out requiring explicit storage and manipulation of the
nal data matrix M. The incremental SVD algorithm can
mmarized as follows [4]:

SVD of the training data is given by
( ) ( ) ,  min( , ).1

TU diag s V r d nr nrd n d r→ ⋅ ⋅ ≤××× × (6)

n new testing samples Cd r× , the matrix [M C] can be 
mposed as follows

[ ] ( ) 0
[ ].

0 0

T
diag s L V

U J M C
K I

=⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(7)

e J is the orthogonal basis of H, for example, J,K could 
Q-R decomposition of H, specifically

.

T

T

L U C
H C UL
K J H

=
= −
=

(8)

middle matrix Q is diagonal with a c-column border, 
h needs to be further diagonalized. This is done using 
 again. Since Q is a small matrix, this SVD can be done 
 efficiently.

( )
' ( ) ( )

0
diag s L TQ U diag s V

K
′ ′= → ⋅ ⋅

⎡ ⎤
⎢ ⎥⎣ ⎦

(9)

final decomposition matrices are given by 



[  ]

0
0

U U J U

s s

V
V V

I

′′ ′= ⋅

′′ ′=

′′ ′= ⎡ ⎤
⎢ ⎥⎣ ⎦

(10)

It is easy to verify that
( ) ( ) [ ( ) ( )  ]

[  ].

T TU diag s V U diag s V C

M C

′′ ′′ ′′⋅ ⋅ = ⋅ ⋅

=
(11)

A special case is when the additional data matrix C is a 
single vector c C= . The computation can be done very
quickly since K becomes a scalar, Tk K c UU c= = − , and J

becomes a vector, ( ) /Tj J c UU c k= = − . This is what we
implemented in our feature adaptation algorithm.

Salient features of this technology are:
1. Entirely based on acoustic feature space “tracking”

and fully unsupervised.
2. Does not need the speaker-id information for

adaptation, amenable to multi-users system. 
3. Implemented by incremental singular value

decomposition (SVD) and runs in real time. 
4. Continuously update transformation matrix based on a 

windowed acoustic features, effectively perform a
non-linear transform and capable of capture local
acoustic variations.

5. Can be further combined with other affine transform 
and normalization techniques.

3 COMBINING MODEL-BASED MLLR WITH 
FEATURE-BASED APPROACH

Previous research on speaker adaptation has been focused on 
model adaptation and pronunciation adaptation. Since the
continuous feature adaptation and the model adaptation
algorithms are independent, we can be combined.

Among many speaker adaptation algorithms, the Maximum
Likelihood Linear Regression (MLLR) is most widely used
and has shown to significantly improve speech recognition 
accuracy for accented speech using very few adaptation data 
[5-7]. Even though many advanced model adaptation
algorithms have been developed recently [8-10], as a proof 
of concept we choose the basic MLLR algorithm for its 
simplicity. The MLLR we implemented is an unsupervised 
single class transform applied only to the Gaussian means.

We first perform feature-based continuous adaptation, and 
then implement model-based MLLR on the new speech
feature. Figure 1 shows the integrated approach. Basically,
the feature based method improves the Mel Frequency
Cepstral Coefficients (MFCC). Then, the improved feature 
vector goes into the MLLR algorithm for updating the
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ker model parameters. Finally, the new parameters go 
the speech engine.

Feature
Improvement
algorithm

e
r MLLR

adaptation
algorithm

Improved
features Speech
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Updated
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parameters

re 1 Block diagram of the combined approach for
ker adaptation.

4 EXPERIMENT ON NATO DATABASE

The NATO database

NATO native and non-native corpus was developed by 
ATO research group to provide a military oriented
ase for multilingual and non-native speech processing 
es [11]. Speech data was recorded in naval transmission 
ing center of four countries Germany (GE), Netherlands
, United Kingdom (UK), and Canada (CA). The
cts from Germany, Netherlands and UK were native 

kers of German, Dutch and UK English, respectively.
Canadian subjects included native speakers of both
ish and Canadian French. Every speaker recorded a
ber of utterances in the international argot of the air 
 (English), as well as a rendition of Aesop's fable "The 
hwind and the Sun", in both their native language and
ish. In this paper, recognition was performed only on
English utterances in the database, for a total 2223
ances and 50.7K words. The vocabulary size is about 
The detail data and speaker information are given in 
e 1.

CA GE NL UK
 (hours) 2.49 2.25 2.53 1.63
eakers 22 51 48 13
omen 5 0 9 5

22-35 17-23 17-61 19-62
age data per
ker (minutes)

6.79 2.65 3.16 7.52

le 1 NATO data and speaker information 

Acoustic Model and Language Model Training

Carnegie Mellon University (CMU) Sphinx-3
inuous density Hidden Markov Model (HMM) system 
used for our study. HMMs with 5000 tied states, each 
elled by a mixture of 8 Gaussians, were trained from 
e American speech: 130 hours of BN (broadcast news) 
combined with 33 hours of SPINE1 (Speech in Noisy 
ronments 1) and SPINE2 data. 

CMUdict pronunciation dictionary was used for the
riment. The pronunciations in this dictionary represent
ard American pronunciation of all words, expressed in 

s of 40 phonemes. No lexical adaptation was done.



A tri-gram LM is trained with probability masses
redistributed by the Good Turing discounting strategy. We 
randomly partitioned the NATO data into two parts, part A 
and part B, which are roughly equal in terms of data size. 
When we performed recognition of part A, a language model 
trained from part B was adopted, and vice versa.

4.3 Experimental results

Our following experiments are all based on unsupervised
adaptation. In all tables, the numbers outside the parentheses 
represent recognition accuracy, while the numbers within
parentheses represent the recognition error, all in percentage.
Table 2 summarizes the experimental results. The MLLR
adaptation algorithm improves the word accuracy (only
consider deletions and substitution error) by an average of 
11%. The WER (also consider the insertion error) reduction
does not improve as much as the recognition accuracy. This 
is attributable to the fact that the models for the background 
(non-speech) were adapted with the same matrices as the 
models for speech. This results in the insertion of a large 
number of spurious words in the recognition hypothesis in 
non-speech segments, as well as the misrecognition of
several of the uttered words as silence.

Data
Baseline (%) With MLLR

adaptation
Relative

improvement
CA 77.75 (33.39) 83.92 (30.46) 7.94 (8.78)
GE 52.51 (55.84) 63.97 (59.78) 11.46 (-7.06)
NL 59.90 (49.70) 71.02 (46.98) 18.56 (5.47)
UK 69.25 (49.55) 74.86 (47.70) 8.10 (3.73)

Table 2: Baseline and after MLLR results.

Table 3 summarizes the results of the feature adaptation
method. The input to the feature adaptation is the standard 
39-dimension MFCC feature, while the output is improved
39-dimentison MFCC feature. The proposed feature
adaptation algorithm improved the baseline performance by 
an average of 15%. Similar to MLLR, performance on
German and Dutch speakers has been improved the most. It 
might due to the fact that German and Dutch accent are quite
different from American accent.

Data Baseline (%) With Feature
adaptation

Relative
improvement

CA 77.75 (33.39) 82.58 (27.28) 6.21 (18.3)
GE 52.51 (55.84) 64.56 (42.33) 22.95 (24.19)
NL 59.90 (49.70) 73.00 (32.96) 21.87 (33.68)
UK 69.25 (49.55) 76.50 (36.22) 10.47 (26.9)

Table 3: Baseline and after feature adaptation results.

Table 4 summarizes the performance by combining the
feature and model adaptation algorithms. The average
overall improvement is 29.5%.
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a Baseline
(%)

Combined
adaptation

Overall
Improvement

77.75 (33.39) 86.85 (25.61) 11.7 (23.30)
52.51 (55.84) 76.84 (40.75) 46.33 (27.02)
59.90 (49.70) 83.30 (27.23) 39.07 (45.21)
69.25 (49.55) 83.75 (33.92) 20.9 (31.54)

le 4: Integrated system recognition accuracy.

5 CONCLUSIONS

e paper, a feature based adaptation algorithm was
osed for unsupervised continuous speaker and
ronmental adaptation. Experiments on NATO non-
e database has shown significant speech recognition
racy improvement over baseline acoustic model trained 
ative English speaker. The feature based adaptation
rated with MLLR model based adaptation improved the 
rmance even further.
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