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Abstract 
Tone plays an important role in recognizing spoken tonal 
languages like Chinese. However, the F0 contour discontinuity 
between voiced and unvoiced segments has traditionally been a 
bottleneck in modeling tone contour for automatic speech 
recognition and synthesis and various heuristic approaches 
were proposed to get around the problem. The Multi-Space 
Distribution (MSD) was proposed by Tokuda et.al. and applied 
to HMM-based speech synthesis, which models the two 
probability spaces, discrete for unvoiced region and continuous 
for voiced F0 contour, in a linearly weighted mixture. We 
extend the MSD to tone modeling for speech recognition 
applications. Specifically, modeling tones in speaker-
independent, spoken Chinese is formulated and tested in a 
Mandarin speech database. The tone features and spectral 
features are further separated into two streams and stream-
dependent models are built to cluster the two features into 
separated decision trees. The recognition results show that the 
ultimate performance of tonal syllable error rate can be 
improved from toneless baseline system to the MSD based 
stream-dependent system, 50.5% to 36.1% and 46.3% to 35.1%, 
for the two systems resulted from using two different phone 
sets. The absolute tonal syllable error rate improvement of the 
new approach is 5.5% and 6.1%, comparing with the 
conventional tone modeling. 
Index Terms: speech recognition, MSD, tone modeling, 
LVCSR, Mandarin speech recognition

1. Introduction 
Tones are essential for lexical access in tonal languages like 
Chinese. In Chinese, each character, the basic written unit, is 
pronounced as a tonal monosyllable. Tonal syllable recognition 
is critical to name entity identification and other scenarios that 
strong contextual information is not available. It also provides a 
direct examination for the precision of acoustic model at 
phonetic level by isolating the impact of language model in 
LVCSR. Moreover, it has many other possible applications, e.g. 
PPT (Mandarin proficiency test). 

Tone is carried by perceived pitch in the voiced part of a 
syllable. Unlike the spectral features, no F0 is observed in 
unvoiced region. The discontinuity between voiced and 
unvoiced segments has traditionally made tone modeling 
difficult. Many ad hoc approaches have been proposed to 
interpolate F0 in unvoiced segments to bypass the discontinuity 
problem [1-4]. The interpolated F0s are generated from a 
quadratic spline function [1], an exponential decay function 
towards the running F0 average [2], or a probability density 
function  (pdf) with a very large variance [3-4]. Despite their 
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ristic nature, these approaches are reasonably effective in 
orporating F0 as extra components in the short-time acoustic 
tures. As a result, the concatenated spectral and pitch 
tures can be used into one-pass decoding. However, the 
ficial F0 has not any contributions to identify tones, or even 
urs bias in the models. Furthermore, the spectral features 
entially represent the vocal tract information, while the pitch 
tures characterize the vibration of vocal cord. They are, to 
 first order, independent of each other. By using two data 
ams we can model spectral and pitch features independently 

6]. 
Other approaches model tone and spectral information 

arately [7-8]. The tones are usually derived from force-
ned syllable boundaries in a post processing stage after the 

-pass recognition. A longer time window can then be used 
t explicitly to take neighboring tone information into account 
. As to integrate the tone model into the search process, 
coring lattice or N-best lists output from the recognition is 
ally adopted. 

In this paper, we apply a multi-space distribution (MSD) 
ed tone modeling to speech recognition of tonal languages. 
e MSD models the discontinuous pitch contours in a 
tistical compact and rigorous manner. The MSD was 
ginally proposed by Tokuda et.al. and successfully applied to 
M-based speech synthesis [10]. We extend the model to 

aker-independent Mandarin (“Putonghua”) tone recognition. 
e resultant model is integrated naturally in the one-pass 
rbi decoding of continuous speech recognition. The tone 

tures and spectral features are separated into two streams 
 stream-dependent models are constructed to cluster the 
responding two features into separated decision trees. 

2. MSD for Tone Modeling 
lti-Space Probability Distribution (MSD) was proposed by 
uda et.al.[10]. It assumes that the observation space Ω  of 

event is made up of G sub-spaces. Each sub-space gΩ  has 

prior probability ( )gp Ω  and 1 ( ) 1G
g gp= Ω = . An observed

tor, o, in each sub-space is randomly distributed according 
an underlying pdf, ( )gp o . The dimensionality of the 

ervation vector can be variable, i.e. different from one sub-
ce to the other. The observation probability of o is defined 

( )
( ) ( ) ( )g g

g S o
b o p p o

∈
= Ω                                         (1) 

ere ( )S o  is the index set of the sub-spaces that o belongs to. 

s determined by feature extractor at each observation. A 
ture of K Gaussians can be seen as a special case, i.e. K-
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subspace of MSD with the same dimensionality and Gaussian 
distribution in each sub-space. The mixture weight associated 
with kth Gaussian component kc  can be regarded as the prior 

probability of kth sub-space ( )k kc p= Ω . 

F0 is a common feature of tone pattern used in tonal 
speech recognition. But F0, a continuous variable, only exists 
in the voiced region of speech. In the unvoiced region, only a 
discrete variable, or just the unvoiced symbol exists. Fig.1 
shows two tonal syllables “ti2 gan4” (the numerical labels 
denote their tone type: tone 2 and tone 4.) in their triphone 
representation form and their F0 contours only span across 
voiced segments: t-i2+g and g-an4+r. The discontinuity of F0 
between voiced and unvoiced segments used to make the 
conventional modeling difficult. MSD provides an almost 
perfect solution to model F0 without any heuristic assumptions. 
In the voiced region, F0 can be regarded as one-dimensional 
observation generated from several one-dimensional sub-spaces, 
while in the unvoiced region F0 can be treated as a symbol 
whose dimensionality is zero. In the implementation, we still 
can use mixture Gaussian output distribution, which is 
commonly used in current LVCSR and estimated by the Baum-
Welch algorithm. It assumes that the output pdf of the zero-
dimensional, unvoiced sub-space is a Kronecker delta function 
and the one-dimensional sub-space of the voiced sub-space has 
Gaussian distribution. 

Fig.1 also gives a schematic representation of using MSD 
for tone modeling. For the unvoiced Initial ‘t’, the weigh of 
mixture component in each state which represents unvoiced 
sub-space is close to one, while the weight summation of other 
mixture components describing the voiced sub-spaces 
approximates to zero, and vice versa for voiced Final ‘an4’. 
Tone modeling in this way does not need any preprocessing for 
F0 feature. It directly models the original F0 feature and avoids 
any errors potentially incurred by F0 interpolation in unvoiced 
region. 
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3. Stream-dependent State Tying 
LVCSR, context-dependent phone models, e.g. tri-phone 
dels, are commonly used to capture the acoustic co-
iculation between neighboring phones. To deal with the 
ta sparseness problem of context-dependent phone in the 
imation process, model parameters are usually tied together, 
. state tying based on decision-tree clustering method is 
dely used in current LVCSR.  

Spectral features like MFCC represent essentially the 
cal tract information. Tone features reflect the vibration 
quency of vocal cord. They can be modeled through two 
ependent data streams, thus it also can avoid the output 
elihood being dominated by spectral feature since the 
ensionality of spectral feature is much larger than that of 

e feature. Moreover, the co-articulation effects of spectral 
ture and tone feature, or their context dependencies, are 
ferent. Accordingly, it is more reasonable to make state 
ng in two streams independently. We design two question 
s corresponding to tonal and phonetic context dependence, 
pectively. Then decision-tree based clustering method is 
d to automatically find appropriate cluster for state tying.  

An example of stream-dependent state tying based on 
cision-tree clustering is shown in Fig 2, which illustrates 
te tying process performed on state 2 of all tri-phones with 
tral phone “y”. Two decision trees are grown for this state 

 using their own question sets. From the top several 
estions which are used to split the data samples (states), we 
d that pitch feature stream mainly depends on the questions 
out tonal context, while the questions for spectral feature 
eam are about segmental context. 

4. Tonal Syllable Recognition 
e recognition process of tonal syllables can be rewritten as, 

1argmax ( | )

( ; , ) ( ; , )
t t t t t t

t t
tM

s s s s p p p p
kq t kq kq kq t kq kq

k k

P q q

c o c o
α β

μ μ

−= ∏ ⋅

Σ ⋅ Σ
 (2) 
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Fig. 1 F0 contour of tonal syllable “ti2 gan4” and a schematic representation of using MSD for tone modeling 



where M represents tonal syllable sequence, qt is the state at 
time t, and ot is divided into two streams: s

to  for the spectral 

feature and p
to  for the pitch feature. α and β are the weights 

for streams separately and can be adjusted according to the 
training or development data to optimize, say, recognition 
performance. We set them equal to 1 in this study. 

( ; , )
t t t

s s s s
kq t kq kq

k
c o μ Σ  is a mixture of Gaussians trained by the 

spectral features, where 
t

s
kqc is the kth mixture weight; while 

( ; , )
t t t

p p p p
kq t kq kq

k
c o μ Σ  is a MSD trained by the pitch features, 

where 
t

p
kqc is the mixture weight. At the state qt, spectral 

feature and pitch feature access their own decision trees to 
obtain state parameters, but they share the same state 
transition probability.

Fig. 2 An example of stream-dependent state tying based on 
decision-tree clustering 

5. Experimental Results and Analysis 

5.1 Experimental Setup 

The recognition experiments are performed on a speaker-
independent, gender-dependent database of read speech. 
Training set contains about 80 hours’ data (about 50k 
utterances) from 250 male speakers. Testing set consists of 25 
male speakers and 500 utterances. We tried two phone sets 
named Ph97 and Ph187, which are commonly used in 
Mandarin speech recognition and described as follows: 

Ph187: each tonal syllable is decomposed into a syllable 
Initial and a tonal Final. 
Ph97: each tonal syllable is divided into a consonant 
followed by two consecutive tonal sonorant segments [11]. 

The acoustic features are in two streams: spectral feature 
stream is 39-dimensional MFCC, consisting of 12-dimensional 
cepstral coefficients, logarithmic energy and their first and 
second order derivatives; and pitch feature stream is a 5-
dimensional vector, consisting of logarithmic F0, its first and 
second order derivatives, and pitch duration and long-span 
pitch [12]. Each phone model is a cross word tri-phone HMM 
with three emitting states. HMM parameter size used for the 
configuration of the experiments is nearly 5000*16 Gaussians. 
Free tonal syllable loop (without language model) is employed 

in 
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the decoding.  

Experimental Results 

n recognition experiments based on two phone sets are 
ried out. All experimental results are shown in Fig 3, where 
39D-1S: 39 MFCC in one stream 
44D-1S: 39 MFCC and 5 pitch in one stream; F0 
interpolation for unvoiced segments  
44D-2S: 39 MFCC and 5 pitch in two streams; F0 
interpolation for unvoiced segments 
MSD-2S: 39 MFCC and 5 pitch in two streams; MSD used 
for tone modeling instead of F0 interpolation 
MSD-SD: 39 MFCC and 5 pitch in two streams; MSD used 
for tone modeling; and stream-dependent state tying 
employed. 
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. 3 Recognition performance in tonal syllable error rate 
SER) 

39D-1S and 44D-1S are our two baseline systems, which 
e the comparison between with and without pitch feature for 
al syllable recognition [12]. The performance of tonal 
lable error rate (TSER) can be improved from without pitch 
ture baseline (39D-1S) to the stream-dependent system 
SD-SD), 50.5% to 36.1% and 46.3% to 35.1%, for the two 
tems using different phone set, Ph97 and Ph187. Compared 
th the conventional baseline with pitch feature (44D-1S), 
D-SD can reduce the absolute TSER by 5.5% and 6.1% in 

97 and Ph187. A breakdown of the results in Ph187 shows 
t using two streams (44D-2S), MSD (MSD-2S) and stream-

pendent state tying (MSD-SD) can result in absolute TSER 
uction of 1.2%, 2.9% and 2.0%, respectively. The similar 
ults can be observed in Ph97 except that of MSD-SD. We 
nk Ph97 uses 2-scale (H and L) to identify five tone types so 
t the questions used in state-tying for pitch stream have 
er tone discrimination than that of Ph187. 
The above experiments all use Maximum Likelihood (ML) 

terion for context clustering. The total model size is 
nually controlled by the tradeoff between recognition speed 

d accuracy. Minimum description length (MDL) criterion 
 automatically control model complexity during state tying 
cedure [13]. In order to investigate the potential impact of 
D-SD on the performance of tonal syllable recognition, we 
ploy MDL as the stop criterion in growing decision tree. 
e TSERs are reduced to 33.8% and 32.9%, i.e. absolute 
ER reduction of 2.3% and 2.2%, in Ph187 and Ph97 with 



triple increasing the parameter size.  

5.3 Results Analysis 

The error rates of base-syllable (toneless) and tone in Ph187 
are further analyzed and shown in Fig 4, where we find that 
using two streams and stream-dependent state tying not only 
can improve the performance of tone, error rate reduction from 
29.9% to 24.4%, but also that of base syllable, from 23.6% to 
20.9%. In addition, when the tone and pitch features are 
augmented into one stream (44D-1S), despite its tonal syllable 
error rate is much lower than that of the baseline (39D-1S), the 
error rate of base-syllable is increased by 0.8%, compared with 
that of not using pitch features (39D-1S). 
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Fig. 4 Recognition performance in the error rate of base-
syllable and tone 

We also analyze the mixture weight values of unvoiced 
sub-space in the states of unvoiced and voiced phones. Their 
mean values are given in Fig. 5, in which we find the values of 
state 1 and state 3 in unvoiced phone model are lower than that 
of state 2, and opposite phenomena are observed in voiced 
phone model. We think that state 1 and state 3 are in a 
transition between unvoiced and voiced segments so they are 
less distinct than the central states in term of their 
voiced/unvoiced characteristic. 
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6. Conclusions 
We propose to use MSD, two streams and stream-dependent 
state tying for tone modeling in tonal syllable recognition. 
These approaches have a custom-made design for the 
characteristics of tone features: 1) modeling the original F0 
features without any artificial interpolation for discontinuous 
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ions; 2) separating state tying based on decision-tree 
stering for tone and spectral features. It achieves a 
nificant improvement of tonal syllable recognition 
rformance. In the future, spectral and pitch stream will be 
ther weighted according to their contributions to speech 
ognition applications. 
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