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Abstract
We propose a hypothesized Wiener filtering (HWF) algorithm for
noise robust variable-text text-dependent speaker-recognition. The
proposed algorithm exploits an important feature of the text - de-
pendent mode of operation of speaker-recognition, namely, the
availability of the ‘clean reference templates’ of the words of the
‘password’ text which is supposed to be the text of the input noisy
speech. The proposed HWF algorithm is set within the one-pass
DP framework proposed by us recently for text-dependent speaker-
recognition, which enables use of multiple-templates for each word
in the password. We evaluate the proposed HWF algorithm for
both speaker - identification and speaker - verification using the
TIDIGITS database and show that the proposed HWF algorithm
has very high recognition accuracies for both additive white-noise
conditions and non-stationary color noise conditions (factory, chop-
per and babble noises), which are also the typical conditions where
conventional spectral subtraction techniques perform poorly.
Index Terms: Robust speaker recognition, hypothesized Wiener
filtering, text-dependent speaker recognition, one-pass DP algo-
rithm

1. Introduction
Robustness of a speaker-recognition system to additive background
noise is an important problem when the system needs to operate in
noisy environments. This is an even more challenging task when
the system has to perform recognition in a noisy environment dif-
ferent from that of training. This is typically the case for speaker-
recognition applications such as access control to buildings, cars,
offices etc., or speaker-authentication over telephones / mobiles
(prior to secure tele-transactions) where a high degree of back-
ground noise in the form of street noise, car noise, other people’s
speech (babble noise) etc., can be expected.

A conventional approach to dealing with noisy speech in ap-
plications such as speech recognition, text-independent speaker-
recognition and speech coding is to apply noise-removal techniques
such as spectral-subtraction or conventional Wiener filtering meth-
ods so as to get an enhanced speech signal prior to feature ex-
traction. While spectral subtraction requires an estimate of the
noise power spectral densities, typically from the most recent non-
speech region, Wiener filtering methods require estimates of both
clean speech power spectrum and the noise power spectrum. There
are a wide variety of Wiener filtering techniques depending on
how the clean speech power spectrum estimate is obtained for
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given frame; these can be broadly categorized as based on
tral-subtraction or, estimates of signal spectrum from previous
ned’ frames or, from model-based estimates such as linear-
iction, or using vector quantizer codebooks; these methods
ypically employed in an iterative framework [1].
The hypothesized Wiener filtering (HWF) [2] was originally
osed for robust speaker-dependent isolated word recognition
DTW framework and has subsequently been adapted to HMM
eworks using state-based filtering for noisy speech recogni-
[3], [4]. However, despite its appealing feature of making use
lean templates or HMMs, it has not been used for speaker-
gnition applications so far, possibly due to the larger focus
search on text-independent speaker-recognition, where HWF
ot be applied [5].
In this paper, we propose the use of the hypothesized Wiener
ring (HWF) approach for realizing a noise robust variable-text
dependent speaker-recognition system. The ‘text-dependent’
ker-recognition problem represents an unique and ideal setting
eriving an advantage with the HWF algorithm, wherein ‘clean

rence templates’ of the words of the ‘password’ text which is
osed to be the text of the input noisy speech are available.
proposed HWF approach exploits this effectively for robust
ker-recognition with high recognition accuracies for both ad-
e white-noise and non-stationary color noise conditions. The
osed HWF algorithm is set within the one-pass dynamic pro-
ming (DP) framework proposed by us recently for variable-

text-dependent speaker-recognition [6], [7], which enables use
ultiple-templates for each word in the password so as to cap-
the intra-speaker variabilities adequately.

. One-pass DP based speaker-recognition
1 shows the typical architecture of the variable-text speaker-

gnition system based on the one-pass dynamic programming
) matching algorithm proposed by us recently [6], [7]. Here,
gure shows the matching for one speaker; each speaker has a
f templates for each word in the vocabulary. Given an input
ance, the feature extraction module converts the utterance into

quence of feature vectors (such as the mel-frequency-cepstral
ficients (MFCCs)). This feature vector sequence corresponds
e input ‘password’ text (say, the digit string 915 in the figure).
The one-pass DP algorithm matches the input feature-vector
ence against the word-models of 9 1 and 5, using multiple
lates per word and inter-word silence templates. The result-

match score (D∗
k) is the optimal distance between the input

ance and the word-templates of speaker Sk. For closed-set
ker-identification, this score is computed for each speaker and
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Figure 1: Text-dependent speaker recognition using Hypothesized
Wiener Filtering (HWF) and One-pass DP framework

the speaker with the lowest score is declared the input speaker. For
speaker-verification, this score corresponds to the match between
the input utterance and the claimed speaker Sk’s models; this score
is normalized by the background score, computed between the in-
put utterance and background speaker’s word-templates and the
normalized score is compared to a threshold; the input speaker
claim is accepted if the normalized score is less than the threshold
and rejected otherwise.

3. Proposed HWF based speaker-recognition
Fig. 2 shows how the input utterance on the x-axis (corresponding
to the password text ‘915’) is matched against the reference tem-
plates ‘R9 R1 R5’ on the y-axis for a speaker. This is a simplified
illustration of the one-pass DP matching which in actuality uses
multiple templates of each word in the password text so that any
of the multiple template of each word is selected for the optimal
match and also uses inter-word silence templates so as to allow for
inter-word pauses to be present or absent in the input utterance.
This algorithm has been described in detail in [6] and [7].
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Figure 2: Dynamic time-warping (DTW) path for HWF

The HWF based algorithm proposed here is described as fol-
lows. The input speech (x-axis) is represented by Tx frames x1,x2,

. . . , xi, . . . , xTx , where xi is the sequence of speech samples of
the ith frame and the corresponding sequence of MFCC feature
vectors is X1, X2, . . . , Xi, . . . , XTx . The sequence of MFCC
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re vectors for the concatenated reference templates on the y-
is Y1, Y2, . . . , Yj , . . . , YTy .
Let the power spectral density (psd) of the input speech be
(w), Px2

(w), . . . , Pxi
(w), . . . , PxTx

(w) and the psd of the
atenated reference templates be Py1

(w), Py2
(w), . . . , Pyj

(w),
PyTy

(w). Let Pn(w) be the noise-estimate obtained from the
t recent non-speech region of the input noisy speech.
The DTW matching is an optimal time-alignment between the
t utterance and the reference templates wherein the warping
tion j = f(i) relates the i-th frame of the input utterance
e j-th frame of the reference templates such that the accu-

ated distance between frame-i of input utterance and frame-j
eference templates over the warping path is minimized. The
t (i, j) is associated with the minimum accumulated distortion
(i, j) which is given by the recursion (as shown in the figure)

DA(i, j) = min
k∈{j,j−1,j−2}

[DA(i − 1, k) + dw(i, j)]

dw(i, j) = d(X̃ij , Yj)

re d(X̃ij , Yj) is the Euclidean distance between the MFCC
ors X̃ij and Yj . While Yj is the MFCC vector of the jth frame
e concatenated reference template, X̃ij is the MFCC vector of
peech signal of the ith frame given by x̃ij obtained by Wiener

ring the input noisy frame xi using the Wiener filter frequency
onse given by

Wj(w) =
Pyj

(w)

Pyj
(w) + Pn(w)

This is done by computing the psd Px̃ij
(w) = Pxi

(w)·Wj(w)
obtaining x̃ij as a frame of time domain samples correspond-
to the psd Px̃ij

(w). The MFCC vector X̃ij is then obtained
x̃ij .

By this, the DTW (or the one-pass DP algorithm [6]) is com-
d on a grid of local distances dw(i, j), i = 1, . . . , Tx, j =
. , Ty , where each column i contains the local distances be-
n the ‘clean’ frames yj , j = 1, . . . , Ty and the corresponding
ned’ frames x̃ij , j = 1, . . . , Ty . Clearly, since the reference
late is the ‘clean’ version of the input noisy speech, a column

ll have the lowest dw(i, j) for that j which corresponds to the
y frame i within a non-linear warping factor. Thus the DTW
now find the optimal warping path j = f∗(i) which mini-
s the accumulated distortion D∗ = DA(Tx, Ty) given by

D
∗ = min

f(i)

Tx∑

i=1

dw(i, f(i))

This D∗ corresponds to the HWF score D∗
k for speaker k, i.e.,

n the y-axis of Fig. 2 uses the speaker k ‘clean’ templates.
ker-identification and speaker-verification are done using the

e D∗
k as described earlier in Sec. 2 (Fig. 1).

The important point to note here is that D∗
k will be the low-

or the correct speaker, though for each speaker k, the y-axis
ig. 2 uses the ‘same password’, (i.e., R9R1R5 for the ex-
le shown) but which are speaker k’s word templates. Here,
WF exploits the fact that the correct speaker’s reference tem-
s provide a better ‘cleaning’ up of the input noisy speech (x-

) and hence in lower local distances along the optimal path for
speaker than for other speakers.
This is illustrated in Fig. 3, where the matrix of local distances
i, j), i = 1, . . . , Tx, j = 1, . . . , Ty is plotted for a single digit
it 8) test utterance for the three cases: i) No HWF is performed,
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but y-axis with clean reference template of the same speaker as the
input noisy speech (NR), ii) HWF performed with y-axis having
the clean reference template of the same speaker as the input noisy
speech (NR), iii) HWF performed with y-axis having the clean ref-
erence template of a speaker (RR) who is not the speaker of the
input noisy speech (NR). Clearly, it can be noted that case-(i) per-
forms poorly though the same speaker template is used; the con-
ventional DTW (without HWF) is unable to find any good optimal
path for matching and this results in the loss of recognition accu-
racy as the input speaker becomes confusable with other speakers.
Case-(ii) shows that HWF is able to find a good optimal path af-
ter using local distances derived after the HWF operation on the
noisy speech using the correct speaker’s clean template. Case-(iii)
again performs poorly with no good optimal path as there is a mis-
match between the speaker of the input speech and the reference
templates. HWF actually adds to the discriminability by ensuring
that the local distances resulting from case-(iii) are higher than in
case-(ii), due to the fact that, in case-(iii), the noisy input frames
are filtered by ‘clean’ spectra of some other speaker (though the
textual content is same). The figure also shows the matching score
D∗ for each of these case, clearly validating the above differences.

It should be noted that this is a far more demanding require-
ment than the isolated word recognition (IWR) task on which HWF
was originally proposed for (and has been used so far) [2], [3],
[4]. In the case of using HWF for IWR, the ‘correct word’ natu-
rally provides a better ‘cleaning’ up and hence a lower DTW score
than an ‘incorrect word’ whose spectral content obviously does not
match the input speech. In contrast, the HWF’s task in speaker-
recognition is all the more difficult since, for a given speaker, the
DTW-HWF algorithm needs to provide a better match only when
there is a ‘speaker match’, despite having the same ‘word-content’
between the x-axis and y-axis for all speakers.

4. Experiments and Results

We now present results of the HWF algorithm proposed here, used
within the one-pass DP framework [6] for text-dependent speaker
recognition. We evaluate the HWF algorithm proposed here for
both speaker-identification (closed-set) and speaker-verification on
8 speakers in the TIDIGITS database which has a 11 word vo-
cabulary {‘oh’, 0-9}. The clean templates were extracted from
the 7-digits strings and the test data consists of 3, 4, and 5 digit
strings with 11 utterances each per speaker. These experiments
adequately bring out the basic performance potential of HWF. We
also compare it with conventional spectral-subtraction [8], [1] of
the input noisy speech before feature extraction in Fig. 1. These
algorithms (along with the baseline performance of ‘noisy speech’
without any noise-removal) are evaluated for clean test data and
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dditive white-noise of SNRs 0 dB, 5 dB and 10 dB and non-
onary noises (factory, chopper and babble) of 0 dB SNR (from
SEX92 database).
We performed comparisons with spectral subtraction to bring
n important difference between spectral subtraction and Wiener

ring. Spectral subtraction depends solely on obtaining a noise
imate (from the most recent non-speech region) and subtract-
it from successive speech spectra and then generating the en-
ed speech by overlap-add-synthesis method. The performance

pectral subtraction therefore depends only on how well the
e-estimate matches the noise spectra of the noisy speech so
spectral subtraction removes the noise. In fact, we have ob-
ed this to work quite well when the noise is stationary col-
noise, such as car-noise, which allows the spectral subtraction

ffectively subtract out the color noise spectra from the noisy
ch regions using the noise-estimate which correctly has the
of a spectral envelope of the stationary color noise [6], [7].

However, when the input noise is white noise (or non-stationary
r noise), the spectral subtraction technique fails completely
e the noise-estimate obtained from one non-speech region no
er matches the white noise spectra in a subsequent noisy speech
on. The white noise estimate exhibits random spectral varia-
s about a flat spectral envelope and therefore does not subtract
a similar flat, but equally random white noise spectra in a noisy
ch region. Thus, subtraction actually leaves behind a remnant

te noise spectra and at best (when the noise-estimate becomes
e and more flat due to longer time-averages in the non-speech
on) results in the original noisy speech spectra to have a re-
d spectral average, equivalent to an overall attenuation of the
y speech without any enhancement; the resultant speech there-
provides no improved recognition accuracy.
Spectral subtraction behaves in a similar way for non-stationary
r noise also, where the color noise spectra is time varying and
noise-estimate used by the spectral subtraction (from the most
nt non-speech region) no longer matches (and is hence unable
ubtract out) the time-varying color noise spectra in the noisy
ch in subsequent speech regions. In contrast, since the Wiener
r uses the clean speech estimate in addition to the noise - esti-
e, Wiener filtering is able to provide an improved enhancement
irtue of having a good approximation of the underlying speech
trum during the noisy speech period even in such conditions
n the noise-estimate is inadequate to correctly represent the
ent noise spectra in the speech regions.
These differences are brought out in the following experimen-
esults for white noise. Fig. 4 shows the closed-set speaker-
tification accuracy using the one-pass DP algorithm with 1 and
mplates for test data SNRs of 0 dB, 5 dB and 10 dB. It can
een that, while the noisy speech (Noisy) has a very poor per-
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Figure 3: DTW local distance matrix between noisy input speech (x-axis) and clean templates (y-axis) for i) No HWF with same speakers
(NR), ii) with HWF for same speakers (NR), iii) with HWF for different speakers (NR and RR); [blue: low values, red: high values]



formance, spectral subtraction (SS) provides only a marginal im-
provement. However, HWF has a significantly high performance,
clearly validating the effectiveness of the proposed algorithm for
speaker-identification for all the SNRs considered here. The per-
formance improvement (about 10%) from using 1 to 5 templates
in the one-pass DP algorithm [6] can also be noted.
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Figure 4: Closed-set speaker-identification accuracy (%)

Fig. 5 shows the speaker-verification performance using the
DET (Detection error trade-off) curve. The one-pass DP algorithm
is used with 5 templates for a test data SNR of 0 dB. It can be noted
that, as in speaker-identification, the performance of noisy speech
is very poor and spectral subtraction does not improve this. On
the contrary, HWF offers an excellent improvement with a highly
lowered EER (Equal-error-rate) where the probability of false ac-
ceptance (pfa) equals the probability of false rejection (pfr). Ta-
ble 1 shows the EER points (pfa, pfr) for various SNRs (0 dB,
5 dB and 10 dB) for all the three cases – Noisy speech (NOISY),
spectral subtraction (SS) and the proposed HWF algorithm (HWF)
using 5 templates in the one-pass DP algorithm (as in Fig. 5). Here
again, it can be noted that HWF offers the best performance im-
provement, while SS performs as poorly as the NOISY case itself.
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Figure 5: Speaker-verification DET plots for 0 dB test data SNR

In order to show the effectiveness of HWF on non-stationary
noise as discussed in the earlier part of this section, we evaluated
the closed-set speaker-identification performance of the algorithm
on three types of noises, namely, factory noise, chopper noise, and
babble noise for a test data SNR of 0 dB for the same set of speak-
ers in TIDIGITS as above (and with 5 templates in the one-pass DP
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e 1: Speaker-verification EER points (pfa, pfr) for test SNRs
B, 5 dB, 10 dB); clean EER=(0,0)
Test NOISY SS HWF
SNR pfa pfr pfa pfr pfa pfr

0 dB 48.11 47.35 43.56 43.18 7.95 7.20
5 dB 46.59 44.70 36.74 34.85 3.79 4.17
10 dB 42.05 42.80 28.79 31.82 2.27 1.89

rithm). Table 2 shows the speaker-identification accuracy for
noisy speech (NOISY), spectral subtraction (SS) and the pro-
d HWF algorithm. While the performance of noisy speech is
, spectral subtraction achieves only modest relative improve-
ts over the noisy case. However, HWF has an excellent perfor-
ce offering a large improvement over the noisy and SS cases.

e 2: Speaker-identification accuracy (%) for 3 non-stationary
es for test SNR of 0 dB; clean accuracy = 100%

Noise type NOISY SS HWF
Factory 17.04 28.41 95.45
Chopper 29.54 48.86 88.63
Babble 52.27 79.54 96.50

5. Conclusions
have proposed a highly noise robust text - dependent speaker
cognition algorithm based on hypothesized Wiener filtering
F). The proposed algorithm exploits the availability of the

n reference templates of the words of the password text (sup-
d to be the text of the input noisy speech) in text-dependent
e of operation. The proposed HWF algorithm is set within
one-pass DP framework and is evaluated for both speaker-
tification and speaker-verification using the TIDIGITS database.
proposed algorithm has very high recognition accuracies for
additive white-noise and non-stationary color noise.
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