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Abstract
We propose a model-based VAD derived from the Vector Taylor
Series (VTS) approach. A Gaussian mixture (trained with clean
speech) is used in order to provide an appropriate decision rule for
speech/non-speech detection. Additionally, VTS approach adapts
the Gaussian mixture to noise conditions, yielding a stable perfor-
mance for a wide range of SNRs. We have evaluated its ability
for speech/non-speech detection and also its application for robust
speech recognition. When compared to other VAD methods, the
proposed VAD shows the best trade-off in speech/non-speech de-
tection. When applied for Wiener Filtering and for frame drop-
ping, the proposed VAD also provides the best recognition results.
Index Terms: voice activity detection (VAD), vector Taylor series
approach (VTS), Gaussian mixture, Wiener filtering.

1. Introduction
Speech recognition systems are strongly affected by noise. Nu-
merous techniques have been derived to palliate the effect of noise
on the recognition performance. Most of them often require to
estimate the noise statistics by means of a precise voice activity
detector (VAD). The speech/non-speech classification task is not
as trivial as it appears, and most of the VAD algorithms fail when
the level of background noise increases. During the last decade,
numerous researchers have developed different strategies for de-
tecting speech on a noisy signal [1, 2, 3, 4] with special attention
paid to the derivation and study of noise robust features and deci-
sion rules.

In this paper we propose a model-based VAD algorithm. The
speech non speech decision is based on the Vector Taylor Series
(VTS) approach [5, 6, 7, 8]. VTS approach, initially proposed as a
noise compensation procedure for robust speech recognition, has
been adapted for speech/non-speech classification. VTS formula-
tion is based on a Gaussian mixture in the logarithmically scaled
filter-bank-energy (log-FBE) domain. The Gaussian mixture is
adapted to noise conditions and the noisy Gaussian mixture is used
to compute the probability of each Gaussian given the noisy input
frame. These probabilities are used to obtain an estimation of the
clean frame. In the VTS-based VAD algorithm that we propose,
these probabilities are used to compute the probability of the frame
being speech. The VAD decision is done by comparing the proba-
bility of the frame being speech with a threshold. Two advantages
are expected from this approach: On one hand, VAD relies on a
Gaussian mixture model trained with clean speech, and therefore,
the VAD decision is based on the speech events observed in the
training database. On the other hand, the VTS approach provides
a method to adapt the Gaussian mixture to the noise conditions.
This way, the proposed method allow the adaptation of the VAD
to noisy conditions and therefore, the performance of the VAD is
expected to be stable for a wide range of SNRs.
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2. VTS based VAD
Vector Taylor Series approach

VTS approach [5, 6, 7, 8] is a noise compensation method
iding a clean speech representation by removing the additive
e. This noise compensation is performed in the log-FBE do-

and is based on a Gaussian mixture. It assumes that the effect
e noise can be described as an additive term in the log-FBE
ain,

y(x,n) = x + g(x,n) (1)

re x and y are vectors in this domain representing the clean
noisy speech respectively, for a given frame, and n represents
additive noise affecting this frame. For the ith channel, g is
ribed by the equation,

g(i) = log (1 + exp (n(i) − x(i))) (2)

Two auxiliary functions f(i) and h(i) can be defined as,

i) ≡ 1

1 + exp(x(i) − n(i))
h(i) ≡ (1 − f(i))f(i) (3)

using these definitions, we can approach y(i) using a Taylor
s around some values x0(i) and n0(i). Similarly, we can de-
e how a Gaussian pdf in the log-FBE domain is affected by
tive noise using this Taylor series approach. Let us consider a
ssian pdf representing clean speech, with mean μx(i) and co-
ance matrix Σx(i, j) and let us assume a Gaussian noise pro-
with mean μn(i) and covariance matrix Σn(i, j). We can ex-
the Taylor series around x0(i) = μx(i) and n0(i) = μn(i).

mean and the covariance matrix of the pdf describing the noisy
ch can be obtained as the expected values, μy(i) = E[y(i)]
Σy(i, j) = E[(y(i) − μy(i))(y(j) − μy(j))], and can be es-
ted as a function of μx(i), μn(i), Σx(i, j) and Σn(i, j) using
aylor series approach as,

y(i) ≈ μx(i) + g0(i) +
1

2
h0(i)[Σx(i, i) + Σn(i, i)] (4)

Σy(i, j) ≈ (1 − f0(i))(1 − f0(j))Σx(i, j) +

(i)f0(j)Σn(i, j) +
1

2
h2

0(i)(Σx(i, i) + Σn(i, i))2δi,j (5)

re g0(i), f0(i) and h0(i) are evaluated for x0(i) = μx(i) and
) = μn(i). Thus, the Taylor series approach gives a Gaussian
describing the noisy speech from the Gaussian pdf describing
lean speech and the Gaussian pdf describing the noise.
If the clean speech is modeled as a mixture of K Gaussian
, the Vector Taylor Series approach provides an estimate of the
n speech x̂ given the observed noisy speech y and the statistics
e noise (μn and Σn) as,

x̂ ≈ y −
k

P (k|y)g(μx,k, μn) (6)
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Figure 1: Probability P (V |y) of frame y being speech for each
frame of a sentence, evaluated at different SNRs. The signal am-
plitude (for positive values) has also been represented on each plot.

where μx,k is the mean of the kth clean Gaussian pdf and P (k|y)
is the probability of the noisy Gaussian k generating the noisy ob-
servation y, given by,

P (k|y) =
P (k)N (y, μy,k, Σy,k)

k′ P (k′)N (y, μy,k′ , Σy,k′)
(7)

where P (k) is the a-priori probability of the kth Gaussian and
N (y, μy,k, Σy,k) is the kth noisy Gaussian pdf (with mean μy,k

and covariance matrix Σy,k) evaluated at y. The mean and covari-
ance matrix of the kth noisy Gaussian pdf can be estimated from
the noise statistics (μn and Σn) and the kth clean Gaussian pdf
(μx,k and Σx,k) using equations (4) and (5). In the experiments,
the parameters describing the noise statistics have been estimated
using the first and the last 10 frames of each sentence (that are
assumed to be silence).

2.2. Application of VTS to Voice Activity Detection

If each Gaussian k is assigned with a probability P (V |k) (the
probability of the kth Gaussian being speech), the probability of a
noisy input frame y being speech can be evaluated as,

P (V |y) =
k

P (V |k)P (k|y) (8)

where P (k|y) is given by the VTS approach (equation (7)).
The probability P (V |k) can easily be estimated for each

Gaussian, since the Gaussian mixture is built from a clean speech
training database. Clearly, clean Gaussians with a low mean value
in the energy coefficient represent silence events, while those with
a high value represent speech events. In this work we have consid-
ered the mean energy of the clean Gaussian Ek in order to estimate
this probability, and a linear function between two reference ener-
gies (E0 and E1) has been considered,

P (V |k) = (Ek − E0)/(E1 − E0) if Ek ∈ [E0, E1] (9)

with P (V |k)=0 if Ek < E0 and P (V |k)=1 if Ek > E1 . The
parameters E0 and E1 have empirically been adjusted.

Fig. 1 shows the evolution over time of the evaluated P (V |y)
for a sentence extracted from AURORA-2 database [9], at differ-
ent SNRs. The effectiveness of the method at low SNRs can be
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rved with this example. A probability greater than 0.8 is ob-
d for, at least, some frames at each syllable even for low SNRs
sentence corresponds to the English digit stream 86Z1162).
decision speech/non-speech can be performed by using a

shold T . The frame y is labelled as speech if P (V |y) > T ,
as non-speech otherwise. Additionally, a time-in and a time-
of several frames can be considered, in order to avoid that the

discards those low-energy speech frames at the beginning
at the end of some syllables.

3. Experimental framework
ral experiments are commonly carried out in order to assess
erformance of VAD algorithms. The analysis is normally fo-
d on the determination of the error probabilities in different
e scenarios and SNR values [10, 4], and the influence of the

decision on speech processing systems [11, 12]. The exper-
tal framework and the objective performance tests conducted
aluate the proposed algorithm are described in this section.

Evaluation under different noise environments

t, the proposed VAD was evaluated in terms of the abil-
o discriminate between speech and non-speech in different
e scenarios and at different SNR levels using the AURORA-
tabase [9]. This database is built from the clean TIdigits
base (that consists of sequences of up to seven connected digits
en by American English talkers) used as source speech, and

lection of eight different real-world noises that have been arti-
lly added to the speech at SNRs of 20dB, 15dB, 10dB, 5dB,
and -5dB. In the discrimination analysis, the clean TIdigits

base was used to manually label each utterance as speech or
speech on a frame by frame basis for reference. Detection
ormance is then assessed in terms of the speech pause hit-rate
0) and the speech hit-rate (HR1) defined as the fraction of all
al pause or speech frames that are correctly detected as pause
eech frames, respectively,

HR1 =
N1,1

N ref.
1

HR0 =
N0,0

N ref.
0

(10)

re N ref.
1 and N ref.

0 are the number of real speech and non-
ch frames in the whole database and N1,1 and N0,0 are the
ber of speech and non-speech frames correctly classified, re-
tively.
Fig. 2 compares the proposed VTS-based VAD (using a
shold T=0.5) to standardized algorithms including the ITU-T
9 [13], ETSI AMR [14] and ETSI AFE [15] and other re-

ly reported algorithms [1, 2, 3, 4] in terms of the non-speech
ate (HR0) and speech hit-rate (HR1) for clean conditions and

levels ranging from 20 to -5 dB. Note that results for the
VADs defined in the AFE DSR standard [15] for estimating
noise spectrum in the Wiener filtering (WF) stage and non-
ch frame-dropping (FD) are provided. The results shown in
e figures are averaged values for the entire set of noises. It
be concluded from figure 2 that: (i) ITU-T G.729 VAD suf-
poor speech detection accuracy with the increasing noise level
e non-speech detection is good in clean conditions (85%) and
(20%) in noisy conditions. (ii) ETSI AMR1 yields an conser-
e behavior with high speech detection accuracy for the whole
e of SNR levels but very poor non-speech detection results at
easing noise levels. Although AMR1 seems to be well suited
peech detection at unfavorable noise conditions, its extremely
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conservative behavior degrades its non-speech detection accuracy
being HR0 less than 10% below 10 dB, making it less useful in
some speech processing system. (iii) ETSI AMR2 leads to consid-
erable improvements over G.729 and AMR1 yielding better non-
speech detection accuracy while still suffering fast degradation of
the speech detection ability at unfavorable noisy conditions. (iv)
The VAD used in the AFE standard for estimating the noise spec-
trum in the Wiener filtering stage is based in the full energy band
and yields a poor speech detection performance with a fast decay
of the speech hit-rate at low SNR values. On the other hand, the
VAD used in the AFE for frame-dropping achieves a high accuracy
in speech detection but moderate results in non-speech detection.
(v) Finally, the proposed VTS-VAD yields the best compromise
among the different tested VADs. It obtains a good behaviour in
detecting non-speech periods as well as exhibits a slow decay in
performance at unfavorable noise conditions in speech detection
(90% at -5 dB).

Table 1 summarizes the advantages provided by VTS-
VAD over the different VAD methods in terms of the average
speech/non-speech hit-rates (over the entire range of SNR val-
ues). Thus, the proposed method with a 97.50% mean HR1 and a
55.62% mean HR0 yields the best trade-off in speech/non-speech
detection when compared to all the VAD analyzed.

3.2. VAD evaluation on a robust ASR system

Although the discrimination analysis presented in the preceding
section are effective for the evaluation of a given speech/non-
speech discrimination algorithm, the influence of the VAD in a
speech recognition system was also studied. The reference frame-
work (Base) is the distributed speech recognition (DSR) front-end
[16] proposed by the ETSI STQ working group for the evalua-
tion of noise robust DSR feature extraction algorithms.The influ-
ence of the VAD decision on the performance of different fea-
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n conditions and -5 dB.

Comparison with standard VADs
G.729 AMR1 AMR2

HR0 (%) 31.77 31.31 42.77
HR1 (%) 93.00 98.18 93.76

AFE (WF) AFE (FD) VTS-VAD
HR0 (%) 57.68 28.74 55.62
HR1 (%) 88.72 97.70 97.50

Comparison with other VADs
Sohn Woo Li Marz. VTS-VAD

R0 (%) 43.66 55.40 57.03 52.69 55.62
R1 (%) 94.46 88.41 83.65 93.04 97.50

extraction schemes was studied. The first approach incor-
tes Wiener filtering (WF) to the Base system as noise sup-
sion method. The second feature extraction algorithm com-
s Wiener filtering and non-speech frame dropping (FD). Ta-
2 shows the AURORA-2 recognition results as a function of
SNR for speech recognition experiments based on the G.729,
R, AFE, and VTS VAD algorithms. These results were av-
ed over the three test sets of the AURORA-2 recognition ex-
ments. As a conclusion, the proposed VAD outperforms the
dard G.729, AMR1, AMR2 and AFE VADs when used for
and also, when the VAD removes non-speech frames.

4. Conclusions
his paper we propose a model-based VAD derived from the
tor Taylor Series approach. The use of a Gaussian mixture (in
log-FBE domain) trained with a clean speech database pro-
s an appropriate decision rule for speech/non-speech detec-
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Figure 2: Speech/non-speech discrimination analysis as a function of the SNR. Results are averaged for all the noises considered in the
AURORA-2 database. Speech hit-rate and non-speech hit-rate (compared to standard and other recently reported VADs).
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tion. On the other hand, VTS formulation allows the adaptation of
the Gaussian mixture to noise conditions, yielding a stable per-
formance of the proposed VAD for a wide range of SNRs and
noise types. The proposed VTS-VAD have been evaluated in terms
of the ability to discriminate between speech and non-speech in
different noise scenarios. When comparing with other standard
VADs, we have found that the proposed VTS-VAD shows the best
trade-off in speech/non-speech detection, with an average 97.50%
mean HR1 and a 55.62% mean HR0 (averaged between clean and
-5dB). With respect to the performance in speech recognition, the
proposed VAD also provides the best recognition results when it is
applied to the estimation of noise for Wiener Filtering and when it
is applied for non-speech frame dropping.
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