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Abstract 
This paper proposes a score predictive model (SPM) based 
approach to integrate two segmentation results obtained by 
HMM and DTW for a Mandarin singing voice corpus. The SPM 
can predict the score of a boundary according to its 
corresponding 14 dimensional feature vector. In order to verify 
the performance of the proposed method, several experiments 
were performed. The experimental results demonstrate the 
feasibility of the proposed approach.  
Index Terms: automatic phonetic segmentation, boundary 
refinement, score predictive model 

1. Introduction

Corpus-based speech synthesis systems are becoming 
increasingly popular due to the high degree of fluency and the 
natural feel of the generated speech. Recently, the corpus-based 
approach was also applied for the synthesis of the singing voice 
[3][9]. However, these systems require a large amount of human 
effort to label the phonetic boundaries of the corresponding 
corpus. As a result, it has become quite important to design an 
efficient approach for automatic phonetic segmentation 
especially when the size of the corpus is very large. There are 
many studies concerning automatic segmentation to be found in 
the literature [2][4][7][8]. Generally, these methods involve two 
steps: first perform a rough phonetic segmentation by forced 
alignment of the Viterbi search using a hidden Markov model 
(HMM), and then apply a boundary correcting postprocessor to 
refine the results obtained by the HMM. Consequently, it should 
be feasible to perform segmentation of singing voice corpora by 
employing the same scheme. Unfortunately, the initial HMM-
based segmentation of singing voice corpora does not perform as 
well as that of speech corpora. This is probably caused by several 
aspects of the physical differences between the singing voice and 
speech. For example, the pitch range variation of a singing voice 
is much wider than that of speech; the average singing rate is 
generally slower but has a higher variance. Furthermore, there is 
no HMM-based recognizer specialized for the singing voice 
available. If the initial segmentation results are not reliable 
enough, then the corresponding postprocessor will refine the 
boundaries inefficiently. Park et al. [4] also concluded that it is 
very difficult to cope with the problem of large labeling errors by 
using a boundary refinement postprocessor. Therefore, there is a 
need to improve the performance of the HMM-based recognizer. 
However, this is quite difficult, even if the HMMs were obtained 
by employing an embedded-reestimation procedure as observed 
in [7].  

In view of the above, an alternative method is to use melody 
information (notes and tempos). This is because the recording 
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t is required to sing a song by following the corresponding 
dy information when the singing voice corpus is being 
cted. Therefore, it seems feasible to use DTW (dynamic 
 warping) instead of HMM for performing segmentation 
rding to the corresponding melody information. In our 
ious study concerning the automatic singing voice rectifier 
DTW was used to perform the segmentation tasks and its 
ormance was found to be acceptable. In other words, other 
entation results can be obtained by using DTW. 

ertheless, there is no guarantee that the performance of DTW 
be better than that of HMM, or vice versa. Consequently, the 
of this work is to develop a practical approach to coordinate 
fforts of DTW and HMM. In this paper, a score predictive 
el (SPM) based approach has been proposed which can 
ict the score of a boundary according to a set of essential 
stic features. Subsequently, several experiments have been 
ed out to verify the performance of the proposed method.  
he remainder of this paper is organized as follows. Section 

plains the SPM-based approach that can integrate the two 
lts obtained by DTW and HMM. In Section 3 we present the 
rimental results and analysis. Finally, we draw our 
lusions in Section 4 and indicate potential future work. 

2. A SPM-based approach 

is section, we propose a SPM-based approach that involves 
ral essential procedures. The details are discussed in the 
wing subsections. 

The phonetic category transitions in Mandarin 

e the synthesis units are syllable-based in most Mandarin 
 systems or Mandarin singing voice systems, the primary 
 of phonetic segmentation is focused on how to precisely 
e the boundaries between two consecutive syllables. There 
22 distinct consonants and 38 distinct vowels in Mandarin 
ese. That is, in theory there are a total of 836 (38 x 22) 
ible phoneme combinations for a boundary. In order to avoid 
nfluence of insufficient data coverage, six primary types for 
onants and nine primary types for vowels are classified in 
nce according to their acoustic characteristics. This suggests 
se of a reduced set composed of 54 (9 x 6) possible phonetic 

gory transitions for each boundary. Therefore, a total of 54 
esponding models for these transitions shall be constructed, 
h is addressed in the following subsections. Table I lists the 
s of consonants and vowels (using Hanyu Pinyin) used in 
paper. 
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Table I. (a). Six types of consonants 
1 m, n, l, r, “null” 2 h, x, sh 3 b, d, g  
4 j, zh, z 5 p, t, k 6 q, ch, c, f, s 

Table I. (b). Nine types of vowels
1  “null” 2 a, ya, wa 3 o, wo 
4 e, er 5 ê , ye, yue 6 ai, iai, wai, yi, ei, wei
7 ao, yao, wu, 

yu, ou, you 
8 an, yan, wan, 

yuan, en, yin, 
wen, yun 

9 ang, yang, wang, eng, 
ying, weng, yong 

2.2 The score function definition 

Generally speaking, the positions of two labeled boundaries are 
not necessarily close to each other even though their 
corresponding features might be similar. Here, the corresponding 
features are extracted from a frame (ex. a rectangular window for 
each labeled boundary, shown in Fig. 1) located around this 
labeled boundary; they can be zero-crossing rate, energy, pitch, 
and other popular acoustic features.  

For example, in Fig. 1, there are three distinct boundaries 
labeled by human, DTW, and HMM, respectively. The manually 
labeled boundary is closer to the HMM labeled boundary even 
though its corresponding acoustic features (ex. zero-crossing rate 
and pitch) are similar to those of the DTW labeled boundary 
rather than the HMM labeled boundary.  
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Fig. 1 Three boundaries with distinct locations. 

On the basis we adopted a score function which sets higher 
scores for those boundaries with smaller ranges around a true 
(manually labeled) boundary. We used this setup simply because 
it can easily distinguish between two kinds of boundaries, one 
close to a true boundary and the other not. In this paper, the score 
function is defined as equation (1) which is modified from the 
Gaussian equation.  

2

2
12/1

2
exp2)( DKDScore , (1) 

where D denotes the distance between a true boundary and 
another candidate boundary. The unit of D is ms. In addition, K
is a constant used to adjust the scale of the score function. In this 
paper, K is set at 7018.559 and  is set at 28 respectively. Such 
setups generates a curve with scores ranging from 0~100. Fig. 2 
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s its corresponding curve of the score function when input 
nges from -200 ms to 200 ms.  
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Fig. 2 The proposed score function. 

The construction of a score-predictive model 

e the score function has been defined, a score predictive 
el (SPM) is subsequently constructed for each phonetic 
ition category. This construction involves three essential 
es, including the collection of training data, a set of useful 
stic features, and a Neural Network (NN) based regression 
el. The details of these phases are as follows. 

Defining candidate boundaries for training data 

oted in Section 2.1, there are 54 possible phonetic transition 
gories for a phoneme boundary. Next, we collect the 
daries according to the corresponding phonetic transition 

gory. In addition, given a true (manually labeled) boundary, 
candidate boundaries located in the nearby area of this 
dary are collected. Based on our observation, the 
entation accuracy (range error < 200 ms) is about 97% 

rdless of using DTW or HMM for the singing voice corpus. 
efore, these candidate boundaries located within 200  ms 
 true boundary are collected. In this study, these candidate 
daries are collected via the following rules: 

Add a set of candidate boundaries, 5 ms apart, located 
within 50  ms of a true boundary. 
Add a set of candidate boundaries, 10 ms apart, located 
within two intervals (50 ~ 100 ms and -50 ~ -100 ms) 
around a true boundary.  
Add a set of candidate boundaries, 20 ms apart, located 
within two intervals (100 ~ 200 ms and -100 ~ -200 ms) 
around a true boundary. 

inally, a total of 41 candidate boundaries (including a true 
dary) can be collected for each true boundary as shown in 
3 according to the three rules mentioned above.  
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Fig. 3 A typical example of all candidate boundaries for a true boundary. 

2.3.2 Defining the SPM-feature for each candidate boundary

Once the locations of these candidate boundaries are defined, we 
take seven popular acoustic features, including zero-crossing rate, 
log energy, entropy [10], bisector frequency [2], pitch and line 
spectrum pairs (LSFs), Mel-scale frequency cepstral coefficients 
(MFCCs), as a basic feature set. All except 2 features are scalars, 
LSFs and MFCCs, which are both a 12-dimensional vector. 
However, these features are not taken directly as training features 
used for generating a SPM. In practice, for each candidate 
boundary, the differences between all acoustic features of its left 
and right frames are evaluated. (The size of a frame is set to 20 
ms). In addition, these features are then normalized to the range 
[0, 1]. Consequently, there is a seven dimensional feature vector 
representing each candidate boundary. In addition, it is better if 
the affect of the neighboring frames can be considered 
simultaneously. Thus, another potential feature vector is 
computed via a delta function which estimates the rate of change 
of the original feature. Equation (2) shows the delta function: 

7,...,2,1dim,
)(

)(
2

dim

dim M

M

M

M
tF

tF
, (2) 

where F indicates the original seven dimensional feature vector, 
M is set as 2, and t denotes a candidate boundary index. Thus, for 
each boundary t, it still needs to extract other features of the four 
neighboring boundaries in addition to its original feature F. In 
this paper, the four neighboring boundaries, 10 ms apart, located 
within 20  ms of this boundary t, and the feature extraction of 
the four boundaries are the same with that of the original feature 
F. As a result, delta F can be derived via equation (2) according 
to F and the features of these neighboring boundaries. Finally, 
the SPM-feature is a 14 dimensional feature vector when we 
combine F and its delta F.

2.3.3 Constructing SPMs by using a NN-based regression model

In this section, we employ a NN (Neural Network) based 
regression model to construct a SPM for each kind of phonetic 
category transition. The input of the NN-based regression model 
is the SPM-feature while its corresponding output is score 
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ined by the proposed score function. In this study, we 
ied Levenberg-Marquardt back propagation [5] as the 
ary training function. Two hidden layers with 30 neurons 
 were adopted and the corresponding transfer function of the 
en layer was the hyperbolic tangent function, but the linear 
tion was used in the output layer.  
ince we employed a NN-based method to construct SPMs, 
re faced with the possibility of a local minimum point. That 
 say, it cannot guarantee that the obtained SPMs are always 
ble enough. To cope with this problem, for each phonetic 
ition category, it costs ten iterative training cycles to obtain 

optimum SPM which has smallest root mean squared error 
SE). Fig. 4 shows the construction of SPMs for the 54 
etic category transitions.  

Fig. 4 The construction of SPMs.

Using the SPM-based approach to integrate the 
results obtained by DTW and HMM 

is study, two feasible phonetic segmentation methods are 
ormed by using DTW and HMM, respectively. The 
riptions concerning automatic segmentation by means of 

 can be found in [1]. For HMM, the TCC-300 corpus [6] 
used to train context-dependent triphone models at the 

nning, then an embedded-reestimation was employed to 
ement the HMM-based alignment. The overall segmentation 
edure is described as follows. 

ince two recognizers were performed initially, there are two 
nitial estimates for each phoneme boundary between two 
yllables.  
ach phoneme boundary is classified according to its 
honetic transition category. Next, we use its corresponding 
PM to predict the scores of two initial boundaries. Only the 
oundary with the higher score is preserved and the lower 
core is discarded.  
 dynamic search area for refinement is determined 

ccording to the score of the preserved boundary. The size of 
he search area is set empirically according to the following 
ules: 
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4. Finally, for the preserved boundary, we select candidate 
boundaries as the test set, which are 2 ms apart, and within a 
search area at both sides of this boundary. Then we use the 
corresponding SPM to obtain scores of these boundaries, and 
the highest score boundary is the final boundary.    

3. Experimental Results and Analysis 

The singing voice corpus used in our experiments was recorded 
from the voice of a professional female recording artist. The 
corpus is composed of a total of 1384 non-uniform length 
utterances which correspond to 9561 syllables in total.  The 
related design and collection of the singing voice corpus was 
elaborated in [3]. The entire corpus was divided into 800 
utterances for training and 584 utterances for the test. The 
boundaries of these utterances were labeled in advance by an 
expert. The training utterances were used to construct SPMs for 
54 phonetic transition categories. The test utterances were then 
used to verify the feasibility of the proposed method.  

As noted in Section 1, most of the boundary refinement 
methods are not very efficient in refining the boundaries if 
initially there are larger segmental errors caused by HMM. This 
is due to the fact that these large segmental errors caused by 
HMM can result in serious outlier problems [7].  In order to 
confirm this phenomenon further, a boundary refinement based 
on a hybrid approach proposed in our previous study [2] was 
compared in the following experiments. This approach was 
verified to be able to perform well on the phonetic segmentation 
of speech data. In addition, this approach refines the HMM-based 
segmental results within a fixed search area ( 40  ms) instead of 
the dynamic one used in the proposed SPM-based approach.  

As mentioned above, a total of four kinds of schemes were 
used in the experiments including an inside test and an outside 
test, they are HMM, DTW, a hybrid approach, and the proposed 
SPM approach. Fig. 5 demonstrates the performance of the inside 
test (800 training utterances) and the outside test (584 test 
utterances) for these schemes.  
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Fig. 5 The comparison of four schemes for automatic segmentation. 
Top: inside test. Bottom: outside test.

From Fig. 5, it is evident that both the performance of DTW 
and HMM are not accurate enough regardless if it is an inside 
test or an outside test. Although the previous hybrid approach 
certainly improves the performance as compared with that of 
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 or HMM, its segmentation accuracy is lower than that of 
proposed SPM-based method. In other words, the proposed 
-based method achieves the desirable performance, as 
ipated. This also indicates that if we were able to integrate 
results (DTW and HMM) more perfectly, it would be quite 
ul for the automatic segmentation task of a singing voice 
us.  

4. Conclusions 

 paper proposed a SPM-based approach to be used to refine 
egmentation results obtained by DTW and HMM. In order 
rify its feasibility, a boundary refinement based on a hybrid 
oach proposed in our previous study was used for 
parison. The experimental results indicated that our proposed 
od has a better performance than that of other approaches. 

n practice, it will be quite possible to improve the 
ormance of the SPM-based method. This is due to the fact 
some SPMs did not work well due to the co-articulation 
lems. For example, for “vowel + nasal” phonetic transition, 
 is always a stronger co-articulation effect between two 
bles. In this paper, we did not address any special handling 
ese cases. In future work we will try other rule-based or 

stics-based methods to cope with the problem of stronger co-
ulation. In addition, more influential acoustic features for 
e prediction will be attempted as well. 
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