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Abstract 
The energy parameter has been widely used as an 
extension to the basic features of mel-frequency cepstral 
coefficients (MFCCs) to improve the recognition 
accuracy in speech recognition. In this paper, a simple 
and effective approach for energy normalization for 
silence (non-speech) portions in an utterance is proposed. 
This approach, named as silence energy normalization 
(SEN), uses the high-pass filtered log-energy as the 
feature for speech/non-speech classification, and then the 
log-energy of non-speech frames is set to be a small 
constant while that of speech frames is kept unchanged. 
In the experiments conducted on AURORA2 database, 
we showed that SEN provides an averaged word error 
rate reduction of 34.9% and 44.6% for Test Sets A and B, 
respectively, when compared with the baseline 
processing. It was also shown that SEN outperforms 
similar approaches like energy subtraction (ES) and 
feature vector selection (FVS). Finally, we showed that 
SEN can be integrated with cepstral mean and variance 
normalization (CMVN), to achieve further improved 
recognition performance.  
Index Terms: silence energy normalization, frame 
vector selection, energy subtraction 

1. Introduction 
The performance of a speech recognition system is often 
severely degraded in the presence of noise. A variety of 
approaches have been proposed to mitigate this 
degradation, and they can be roughly divided into three 
classes: utilization of a noise robust representation of 
speech signals, enhancement of the speech features 
before they are fed to the recognizer, and adaptation of 
the speech models in the recognizer to make them better 
match the noise conditions. The main difference between 
the first two classes of approaches is that, for the first 
class, the noise robust speech features are used for both 
model training and testing, and for the second, 
enhancement procedures are often performed only on the 
noise corrupted speech features for testing, while the 
speech features for training are kept unchanged. In this 
paper, our proposed approach belongs to the first class. A 
new feature normalization scheme called silence energy 
normalization (SEN) is introduced.  
As we know, the energy of speech signal contains 
important information regarding the phonetic content of 
speech, and therefore we have used it directly or the 
variation of it (for example, log-energy, delta energy, etc.) 
to be one of the speech features for recognition. However, 
these energy features are often vulnerable to noise and 
thus their discriminating capability is limited. Recently, 
some approaches have been proposed to enhance these 
energy features [1-5]. For example, in [1] the speech 
energy contour is extracted from the high-pass filtered 
signal so as to reduce the distortion in the delta energy, 
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in [2] the dynamic range of log-energy sequences for 
 training and testing utterances is normalized to a 
t one in order to reduce the environmental mismatch, 

re the normalization function indicates lower-energy 
es are more affected by noise than higher-energy 
. On the other hand, [6] introduces the method of 
e vector selection (FVS) based on variable frame 
processing or voice activity detection (VAD), where 
rame-to-frame variation (for example, the Euclidean 
 of the delta feature) or the log-energy of each 
e is used as an indicator for frame selection. If its 
e is below a predefined threshold, this frame is 
ified as silence or noise-only and is then discarded.  

ly motivated by the concepts in [2] and [6], in this 
r we propose the approach of silence energy 
alization (SEN). In SEN, every frame vector of an 

ance is first classified as speech or non-speech 
nce). The classifier is based on the output of a 
-pass filter with the log-energy being the input. Then 
each of the silence frames the log-energy is 
alized to a small constant, while the log-energy of 
peech frames remains unchanged. Note that in SEN, 

classification and normalization procedures need to 
erformed on the utterances in both clean training and 
y testing databases, and unlike FVS, the frames 
lled as non-speech are not discarded. We will show 
by SEN the normalized log-energy sequence of a 

e corrupted utterance is quite close to that of the 
esponding clean version. Also, the threshold used in 
classifier for SEN is determined by the input 
ance and needs not to be tuned heuristically, which 
particular benefit of SEN. Furthermore, SEN can be 
y integrated with cepstral compensation techniques, 
example, cepstral mean and variance normalization 
VN) [7], to obtain further improved performance. 
remainder of the paper is organized as follows.  In 
on 2, the proposed approach of SEN is described. 
experimental environment setup is described in 

on 3, and the recognition results of SEN and some 
r approaches are given and discussed in section 4. In 
tion, section 4 also contains the recognition results of 
combination of SEN and CMVN. Finally, section 5 
ly contains some concluding remarks.  

 2. Silence Energy Normalization 

asic idea 
n observing the log-energy contours of a clean 
ance and its noise-corrupted counterparts as in 
re 1(a), some differences between the speech and 
speech portions may be found. For example, the 
-energy speech portions are relatively less influenced 
oise and sometimes keep the ripple characteristics. 

the other hand, the low-energy non-speech portions 
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of the clean utterance are relatively “flat” in the contour, 
and they are much more vulnerable to noise since their 
log-energy levels are significantly elevated. Furthermore, 
the “flatness” of the non-speech portions is kept and 
sometimes further enhanced by the effect of noise. These 
observations lead us to develop the algorithm of silence 
energy normalization (SEN), which mainly deals with 
non-speech portions while keeping speech portions 
unaltered. 

(a)

                    (b) 
Figure 1 (a) the original log-energy contours of a clean 
utterance and its noise-corrupted counterparts with 15dB 
and 5dB of SNR, respectively (b) the SEN-processed 
log-energy contours of three utterances the same as those 
in Figure 1(a) 
2.2 The procedures of SEN 
The algorithm of SEN mainly consists of two steps. The 
first step is to classify each frame as speech or 
non-speech (silence), which is analogous to the 
voice-activity detection (VAD), and the second step is to 
normalize the log-energy of each silence frame to be a 
small constant. According to [6], the variable frame rate 
(VFR) processing in the frame vector selection (FVS) 
uses the delta features to indicate which are speech 
frames or silence frames. As we know, the delta 
operation often possesses band-pass characteristics, 
which removes the near-DC low-frequency components. 
Here, we use a simple IIR high-pass filter different from 
the delta filter in [6], and its input-output relationship is 

1
1 1

2
y n e n y n ,               (1) 

where e n  is the log-energy of the n-th frame and 
y n  is the corresponding filter output. Figure 2 shows 
the frequency responses of this high-pass filter and the 
delta filter used in [6]. From this figure, it is shown that 
the used high-pass filter does not particularly 
de-emphasize the lower frequency components, and 
according our experimental results, it performs better 
than the delta filter.  
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re 2. The amplitude responses of the used high-pass 
r and the delta filter used in [6]  

t, according to the filter output y n , the 

alized log-energy e n  for the n-th frame can be 
ined by the following equation. 

  if 

       if 

e n y n T

y n T
.                  (2) 

re T is the threshold and  is a small constant. 

 is, if y n  is smaller than the threshold T, then the 
 frame is classified as silence and its log-energy is 
alized to be . Otherwise, the n-th frame is 
ified as speech and its log-energy remains 
anged. Here the threshold T is set in an 
ance-wise manner, and it equals to the average of 
 in an utterance. That is,  

1

1 N

n

y n
N

,                            (3) 

re N is the number of total frames in an utterance. 

iously, the choice of the threshold T in eq. (3) 
lves the whole utterance and thus possibly 
duces a long delay, which may be not feasible 
tion in some real-time applications. However, the 
ntage of such choice is that it is quite simple and 

orms very well under various signal-to-noise ratio 
R) conditions, which will be shown in section 4.  
re 1(b) shows the SEN-processed log-energy 
ours of the clean utterance and its two different 
e-corrupted versions which are the same as those in 
re 1(a). From this figure, it can be shown that there 
tle difference among these normalized contours. It is 
n that SEN preserves most speech portions while 
alizes the log-energy of silence portions to be a 

ll value  ( is set to be 1 here). 

3. Experimental Setup 
proposed silence energy normalization algorithm has 
 tested with the AURORA2 database. For the 
gnition experiments, two sets (Test Sets A and B) of 
ances artificially contaminated by different types of 
e (subway, babble, car, etc.) and different SNR levels 
ging from -5dB to 20dB) were prepared. For both the 
n training and noisy testing databases, each utterance 
first converted into a stream of 12 mel-frequency 



cepstral coefficients (MFCCs) plus log-energy. Then the 
log-energy sequence for each utterance was processed by 
the proposed SEN algorithm described in section 2 or 
some other approaches that will be described in section 4. 
The original 12-dimensional MFCCs (c1~c12) and the 
updated log-energy, plus their delta and delta-delta were 
the components in the finally used 39-dimensional 
feature vectors. Since the proposed algorithm only 
involves the front-end feature extraction, all the 
following procedures for training and recognition are 
identical to the reference experiments stated in the 
AURORA2 documentation [8]. 

4 Experimental Results 

4.1 The results of the energy-processed approaches 
In this subsection, we compare the recognition 
performance of several energy-processing approaches 
including the proposed SEN, Energy Subtraction (ES) [3] 
and two versions of Feature Vector Section (FVS). In 
FVS here, the frames classified as silence are directly 
removed from the utterance without any normalization. 
The first version of FVS uses the speech/silence 
classifier in SEN, and is thus denoted as SEN-FVS, 
while the second makes use of the output of ES method, 
and is thus denoted as ES-FVS. The ES and ES-FVS are 
briefly introduced here. 
The approach of energy subtraction (ES) is quite similar 
to the typical spectral subtraction (SS), and the algorithm 
is stated as follows, 

if  
if  

ES

ES
n

E n N E n T
E n E n TE ,   (4) 

where E n  and nE  are the original and updated 
energy values of the n-th frame, respectively, TES is a 
threshold , N  is the noise energy estimate,  is the 
over-subtracting factor and  is the flooring factor. In the 

following experiments, both N and TES are set to be the 
average of energy values for the first five frames of each 
utterance, and  and  are set to be 0.95 and 0.05, 
respectively. 
For the approach of ES-FVS, a simple rule based on the 
updated energy values E n  from ES is used for 
frame vector selection. If the two consecutive energy 
values, E n  and 1E n , are both smaller than a 

threshold TES-FVS, then the n-th frame is classified as 
silence and then discarded. The threshold is determined 
by the following equation, 

1

1
1

N

ES FVS ES
n

T wT w E n
N

,           (5) 

where N is the number of total frames in an utterance, 

TES is the threshold used in Eq. (4), and 0 1w . In 
our experiments, w  is set to be 0.4. 
Table 1 shows the averaged recognition accuracy for the 
baseline processing and several approaches stated 
previously for Test Set A (four types of stationary noise), 
and Test Set B (four types of non-stationary noise) of 
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ORA2 database. From this table, several 
omena can be observed: 
e proposed approach SEN significantly improves 

e recognition accuracy for both stationary and 
n-stationary noise conditions in almost every SNR 
se. For example, compared with the baseline results, 
N gives 13.57% and 19.28% of absolute word 

curacy improvements for Test Sets A and B, 
spectively. Furthermore, it performs particularly well 
r non-stationary noise conditions since it gives the 
st recognition performance among all approaches in 
most all SNR cases in Test Set B. On the other hand, 
r Test Set A, SEN is especially well for the median 
d low SNR (10dB~0dB) cases.  
e approach ES also performs quite well and very 
ilarly to SEN for Test Set A, and it gives 11.98% of 

solute word accuracy improvement when compared 
ith the baseline result. However, it does not perform 
 well as SEN for Test Set B, although it still 
tperforms the baseline processing by 14.32% of 
curacy rate. One of the possible reasons is that under 
n-stationary noise cases, the noise estimate in ES 
re (simply the average of the first several frames) is 
t very accurate. In addition, the two parameters, 
d  in eq. (4), are set to be constants here for 
plicity, which in fact should be updated according 

 different noise conditions.  
hen implementing frame-vector-selection (FVS) 
ter the classification procedure of SEN (denoted as 
N-FVS in the table), the recognition performance is 
teriorated when compared with that of SEN alone. 
ch results probably tell us that the “detected” silence 
rtions do not always provide us with redundant or 
roneous information for recognition. Modifying 
ese portions (as in SEN) instead of discarding them 
s in FVS) may be a better choice. Another possible 
ason is that the classifier used here does not perform 
ry well, and thus some portions like the 
ence-to-speech or speech-to-silence transitions are 
isclassified as silence and are then discarded.  
nally, observing the results of ES-FVS, where the 
me selection is based on the results of ES, it is 

und that ES-FVS is better than SEN-FVS for all 
ses, which possibly shows that the speech/silence 
assifier in ES-FVS is more reliable than that in 
N-FVS since it depends on the noise-reduced 
ergy sequence E n  in eq. (4) rather than the 

tered log-energy sequence y n . These results 
mewhat coincide those obtained in [6], where FVS 
performed on the noise-reduced features to obtain a 
tter recognition accuracy. Furthermore, we also find 
at ES-FVS outperforms ES only when the SNR is 
orse (0dB and 5dB). One possible reason is that 
der worse SNR conditions, ES is less capable of 
aling with the silence frames, and thus dropping 
em directly as in FVS may be more beneficial. 
 the above, we can roughly conclude that the 

osed SEN performs excellently for almost all 
itions. For example, under high and median SNR 
s, it preserves the energy contour of speech portions 



like ES, thus it performs almost as well as ES. When the 
SNR is getting worse, SEN successfully deals with the 
frames of silence portions and thus it is not necessary to 
discard them as in FVS.  

Test Set 
A Baseline SEN ES SEN-FVS ES-FVS

Clean 98.91 98.71 99.02 96.14 99.09 
20dB 94.99 96.90 97.14 88.23 94.43 
15dB 86.93 93.81 93.94 8362 90.06 
10dB 67.28 85.18 84.12 75.54 80.60 
5dB 39.36 64.84 61.24 57.43 63.55 
0dB 17.07 32.75 29.10 28.11 33.54 

average 61.13 74.70 73.11 66.58 72.43 

                    (a) 
Test Set 

B Baseline SEN ES SEN-FVS ES-FVS

Clean 98.83 98.77 99.02 96.14 99.09 
20dB 92.35 96.95 96.73 88.73 94.20 
15dB 80.79 94.29 92.21 85.51 89.62 
10dB 58.06 86.52 80.29 78.26 79.29 
5dB 32.04 65.93 55.68 60.93 59.68 
0dB 14.63 33.29 24.55 30.96 32.90 

average 55.57 75.39 69.89 68.88 71.14 

                       (b) 
Table 1. Recognition accuracy (%) for baseline and 
various approaches, silence energy normalization (SEN), 
energy subtraction (ES), SEN-based frame vector 
selection (SEN-FVS) and ES-based frame vector 
selection (ES-FVS) for (a) Test Set A and (b) Test Set B 
in Aurora 2 database.   

4.2 The results of the integration of SEN and CMVN 
The proposed SEN is easily integrated with cepstral 
processing approaches since they are performed on 
different features. Here, we combine SEN with the 
approach of cepstral mean and variance normalization 
(CMVN), and the corresponding recognition accuracy 
rates are shown in Table 2. For the purpose of 
comparison, Table 2 also contains the results of the 
baseline processing, CMVN alone, and SEN alone. From 
this table, we find that CMVN alone only leads to 
improvement for non-stationary noise cases (Test Set B). 
However, integrating CMVN with SEN brings 
significantly improved performance for both stationary 
(Test Set A) and non-stationary noise environments in 
almost all SNR cases, and it is better than SEN alone 
especially when the SNR is worse (0dB~10dB). These 
results apparently indicate that SEN and CMVN are 
additive. 

5. Concluding Remarks 

In this paper, we have proposed the approach of silence 
energy normalization (SEN) for the log-energy feature in 
speech recognition. One of the main benefits of SEN is 
that it is very simple to realize, and in SEN almost no 
parameters need to be tuned heuristically. Experimental 
results also show that it is very effective in promoting the 
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gnition accuracy under various noisy conditions. 
hermore, it can be integrated with the well known 
tral mean and variance normalization (CMVN) to 
in further improved performance.  

est Set 
A Baseline SEN CMVN SEN&CMVN

Clean 98.91 98.71 98.95 98.70 
20dB 94.99 96.90 91.52 96.17 
15dB 86.93 93.81 84.50 93.50 
10dB 67.28 85.18 66.16 86.91 
5dB 39.36 64.84 41.92 72.38 
0dB 17.07 32.75 19.56 44.86 

verage 61.13 74.70 60.73 78.76 

                (a) 
est Set 

B Baseline SEN CMVN SEN&CMVN

Clean 98.83 98.77 98.95 98.70 
20dB 92.35 96.95 93.02 96.54 
15dB 80.79 94.29 81.84 94.27 
10dB 58.06 86.52 64.73 87.49 
5dB 32.04 65.93. 43.01 72.42 
0dB 14.63 33.29 22.25 44.89 

verage 55.57 75.39 60.97 79.12 

                   (b) 
le 2. Recognition accuracy (%) for baseline 
essing, silence energy normalization (SEN), cepstral 
n and variance normalization (CMVN), and the 
bination of SEN and CMVN (SEN&CMVN) for (a) 
 Set A and (b) Test Set B in Aurora2 database.   
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