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Abstract
Annotated speech corpora are indispensable to various areas of
speech research. In this paper, we present a novel
discriminative training approach for HMM-based automatic
phonetic segmentation. The objective of the proposed
minimum boundary error (MBE) discriminative training
approach is to minimize the expected boundary errors over a 
set of phonetic alignments represented as a phonetic lattice. 
This approach is inspired by the recently proposed minimum 
phone error (MPE) training algorithm for automatic speech
recognition. To evaluate the MBE training approach, we
conducted automatic phonetic segmentation experiments on
the TIMIT acoustic-phonetic continuous speech corpus. The
MBE-trained HMMs can identify 79.75% of human-labeled
phone boundaries within a tolerance of 10 ms, compared to
71.23% identified by the conventional ML-trained HMMs. 
Moreover, by using the MBE-trained HMMs, only 7.89% of 
automatically labeled phone boundaries have errors larger than
20 ms.
Index Terms: minimum boundary error, automatic phonetic
segmentation, HMM, forced alignment

1. Introduction
The development of speech technology has relied heavily on
corpus-based methodologies. One of the most important and
useful annotations is transcription and segmentation at the
phonetic level. In speech recognition, the use of Hidden
Markov Models (HMMs) has made manual phonetic
segmentation unnecessary, because the HMM training is an
averaging process that tends to smooth segmentation errors. 
However, some researchers believe that speech recognition
would benefit from more precise segmentation in training and
recognition. For example, it is essential that model
bootstrapping should have better initial estimates of the HMM 
parameters so that the local maximum is as close as possible
to the global maximum of the objective function. On the other
hand, in recent years, increased attention has been given to the
data-driven, concatenation-based TTS synthesis because of its
high degree of naturalness and fluency. Both the development 
of concatenative acoustic unit inventories and the statistical 
training of data-driven prosodic models require a speech
database that is precisely segmented. In the past, synthesis has
relied on manual segmentation; however, this is extremely
time consuming and costly. To reduce the human effort and
speed up the labeling process, many attempts have been made
to utilize automatic phonetic segmentation approaches to
provide initial phonetic segmentation for subsequent manual 
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gmentation and verification, e.g., dynamic time warping
TW) [1], methods that utilize specific features and

gorithms [2], HMM-based Viterbi forced alignment [3], and
o stage approaches [4]. These approaches not only save

me and money, but also make possible the rapid adaptation
f a TTS synthesis system to new voices and languages.

The most common method of automatic phonetic 
gmentation is to adapt an HMM-based phonetic recognizer
 align a phonetic transcription with a speech utterance.
mpirically, phone boundaries obtained in this way should
ntain few serious errors, since HMMs in general capture
oustic properties of phones; however, small errors are
evitable because HMMs are not sensitive enough to detect 
anges between adjacent phones [4]. Unfortunately, even a
all segmentation error may produce an audible error in

nthetic speech. To improve the discriminability of HMMs 
r automatic phonetic segmentation, we propose a novel 
scriminative training approach that applies a minimum

oundary error criterion, instead of the maximum likelihood
iterion used in conventional training approaches.

The remainder of this paper is organized as follows.
ection 2 describes the proposed minimum boundary error
iscriminative training scheme in detail. Section 3 presents the
periment results. Finally, in Section 4, we present our 
nclusions and indicate the direction of our future work. 

2. Minimum boundary error training 
iven a training set of observation sequences ROOO ,..,1 ,
e MBE criterion for acoustic model training tries to
inimize the expected boundary errors in the sequences. 
herefore, according to the MBE criterion, the objective
nction can be defined as: 

 (1) ,)()|(
1

R

r
S iriMBE ri

SEROSPF

here is a set of various possible phonetic alignments for
e training observation utterance ; is one of the 
pothesized alignments in ; is the posterior

robability of alignment , given the training observation
quence ; and denotes the “boundary error” of

compared with the manually labeled phonetic alignment in 
e canonical transcription. For each training observation
quence , gives the weighted average boundary
ror of all hypothesized alignments. For simplicity, we 
sume the prior probability of alignment  is uniformly
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distributed, and the likelihood  of alignment  is 
governed by the acoustic model parameter set . Therefore,
Eq.(1) can be rewritten as: 
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where is a scaling factor that prevents the denominator
being dominated by only a few

alignments. If 
rkS kr SOP )|

is set to zero, all the hypotheses are equally

weighted. Accordingly, the optimal parameter set can be
estimated by minimizing the objective function defined in
Eq.(2), i.e.,
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The boundary error of the hypothesized alignment

can be calculated as the sum of the boundary errors of the

individual phones in , i.e.,
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where q is a phone involved in ; is a phone boundary
error function defined as,

iS )(er
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where  and are, respectively, the hypothesized start
time and end time of phone q; and  and correspond to 
the manually labeled start time and end time, respectively.
Since contains a huge number of hypothesized phonetic
alignments, it is impractical to sum the boundary errors
directly without first pruning some of the alignments. For
efficiency, it is suggested that a reduced hypothesis space, 
such as an N-best list [5] or a lattice (or graph) [6], should be 
used. However, an N-best list often contains too much 
redundant information, e.g., two hypothesized alignments can 
be very similar. In contrast, as illustrated in Figure 1, a
phonetic lattice is more effective because it only stores
alternative phone arcs on different segments of time marks
and can easily generate a large number of distinct
hypothesized phone alignments. Although it cannot be
guaranteed that all the phonetic alignments generated from a
phonetic lattice will have higher probabilities than those not
presented, we believe that the approximation will not affect
the segmentation performance significantly.

qs qe

qs qe

r

2.1 Objective function optimization and update
formulae

Eq.(3) is a complex problem to solve because there is no
closed-form solution. Even so, some iterative techniques, such
as the Expectation Maximization (EM) algorithm, can be 
applied to solve it. Since the EM algorithm maximizes the
objective function, we reverse the sign of our objective 
function and re-formulate the optimization problem as, 
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However, the EM algorithm can not be applied directly 
because the objective function comprises rational functions
[7]. The extended EM algorithm, which utilizes a weak-sense

au
p
A
fo
m
ex

an

In

th
ar
re
re

an

In

p

at

w

re
av
th

b

INTERSPEECH 2006 - ICSLP

1218
xiliary function [8] and has been applied in the minimum 
hone error (MPE) discriminative training approach [9] for
SR, can be adapted to solve Eq.(6). The re-estimation
rmulae for the mean vector m and the diagonal covariance
atrix m of a given Gaussian mixture m thus derived can be 
pressed, respectively, as:
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 Eqs. (7) and (8), is a per-mixture level control constant

at ensures all the variance updates are positive;
mD

m  and m

(r

e the current mean vector and covariance matrix,
spectively; and , , and are,
spectively,  statistics defined as:
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 Eqs. (9), (10), and (11), is the occupation

robability for mixture m on q, o is the observation vector

 time t, and represents the lattice for sentence O .

 is computed by
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here is the occupation probability of phone arc q, also

ferred to as its posterior probability; is the weighted
erage boundary error of all the hypothesized alignments in
e lattice; and is the weighted average boundary error of

r
q

r
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Figure 1: An illustration of the phonetic lattice for the speech
utterance “where were they?”. The lattice can be generated 
y performing a beam search using some pruning techniques.
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the hypothesized alignments in the lattice that contain arc q.
Note that the term reflects the difference between
the weighted average boundary error of all the alignments in
the lattice and that of the alignments containing arc q . When

 equals , phone arc q makes no contribution to MBE

training. However, when  is larger than , i.e., phone
arc q generates fewer errors than the average, then q makes a

positive contribution. Conversely, if  is smaller than ,
q makes a negative contribution. The discriminative ability of
the MBE training approach is thus shown. , , and
are computed by
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respectively, where is the current set of parameters. The
above three quantities can be calculated efficiently by applying
dynamic programming to the lattice.

2.2 I-smoothing update
To improve the generality of MBE training, the I-smoothing 
technique [9] is employed to provide better parameter
estimates. This technique can be regarded as interpolating the
MBE and ML auxiliary functions according to the amount of 
data available for each Gaussian mixture. The updates for the
mean vector m and the diagonal covariance matrix m  thus
become:
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respectively, where m is also a per-mixture level control
constant, and 
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Figure 2: The phonetic segmentation results (FER) for the 
models trained by MBE with I-smoothing applied.

 Eqs. (18), (19), and (20), is the frame number of 

and is the maximum likelihood occupation
robability of Gaussian mixture m.

rT

r )(t
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m

3. Experiments

.1 Experiment setup
IMIT (The DARPA TIMIT Acoustic-Phonetic Continuous
peech Corpus) [10], a well-known read speech corpus with
anual acoustic phonetic labeling, has been widely used for
e evaluation of automatic speech recognition and phonetic 
gmentation. TIMIT contains a total of 6,300 sentences,
mprised of 10 sentences spoken by each of 630 speakers

om 8 major dialect regions in the United States. The TIMIT
ggested training and testing sets contain 462 and 168
eakers, respectively. We discard utterances with phones 
orter than 10 ms. The resulting training set contains 4,546 
ntences, with a total length of 3.87 hours, while the testing
t contains 1,646 sentences, with a total length of 1.41 hours.

The acoustic models consist of 50 context-independent
hone models, each represented by a 3-state continuous
ensity HMM (CDHMM) with a left-to-right topology.

Each frame of the speech data is represented by a 39-
imensional feature vector comprised of 12 MFCCs and log
ergy, and their first and second differences. The frame width

 20 ms and the frame shift is 5 ms. Utterance-based cepstral
ariance normalization (CVN) is applied to all the training and
sting speech.

.2 Experiment results
he acoustic models were first trained on the training speech
cording to the human-labeled phonetic transcriptions and

oundaries by the Baum-Welch algorithm using the ML 
iterion with 10 iterations. Then, the MBE discriminative
aining approach was applied further to manipulate the models.
he scaling factor in Eq.(2) was set to 0.1 and the I-

oothing control constant m in Eqs.(16) and (17) was set to
0 for all mixtures. The results are shown in Figure 2. The line 
ith triangles in the figure indicates the expected FER (frame
ror rate) calculated at each iteration of the training process.
learly, the descending trend satisfies the training criterion.



The line with diamonds and the line with rectangles represent
the FER results of the training (inside test) and testing sets,
respectively. We observe that the ML-trained acoustic models
yield FER of 10.31% and 11.77%, respectively, for the
training and testing sets. In contrast, with 10 iterations, the
MBE-trained acoustic models yield FER of 6.88% and 9.25%,
respectively. The MBE discriminative training approach
achieves a relative FER reduction of 33.27% on the training
set and 21.41% on the testing set. The results clearly show that
the MBE discriminative training approach performs very well
and can enhance the performance of the acoustic models
initially trained by using the ML criterion.

Table 1 shows the percentage of phone boundaries
correctly placed within different tolerances with respect to
their associated manually-labeled phone boundaries. The
experiment was conducted on the testing set. We observe that
the MBE-trained models with 10 iterations (ML10+MBE10)
outperform their seed models, i.e., the ML-trained models with
10 iterations (ML10), and the ML-trained models with 20
iterations (ML20). We also observe that the I-smoothing
technique can only slightly improve the performance. The last
row of Table 1 shows the absolute improvements of the best
results (ML10 + MBE10+ I-smoothing) compared to the results 
of ML20. It is clear that the MBE training is particularly
effective in correcting boundary errors in the proximity of
manually labeled positions. In [3], Brugnara et al. presented an
excellent HMM-based phonetic segmentation system, which
achieved an accuracy of 88.7% (under MSM configuration) 
within a tolerance of 20ms. In our experiments, the baseline
HMM-based system yields an accuracy of 88.97% (ML20),
while the MBE training improves the accuracy to 92.11%.

4. Conclusions and future work
We have explored the use of the minimum boundary error
(MBE) criterion in the discriminative training of acoustic
models for automatic phonetic segmentation. The underlying
characteristics of MBE training have been investigated, and its
superiority over conventional ML training has been verified by
experiments. Naturally, the more accurate phonetic
segmentation obtained by the MBE-trained models is very
useful for subsequent manual verification or further boundary
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Table 1: The percentage of phone boundaries correctly placed 
within different tolerances with respect to their associated

manually labeled phone boundaries.

%Correct marks (error < tolerance)Mean
Boundary
Distance <5ms <10ms <15ms <20ms

ML10 9.83 ms 46.69 71.10 83.14 88.94

ML20 9.78 ms 46.95 71.23 83.11 88.97

ML10 + MBE10 7.83 ms 58.35 79.73 88.14 92.09

ML10 + MBE10
+ I-smoothing 7.82 ms 58.48 79.75 88.16 92.11

absolute
improvement 1.96 ms 11.53 8.52 5.05 3.14
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finement using other techniques. The MBE training method
 not difficult to implement, in particular some discriminative
aining tools, such as MPE, have been included in HTK.

In addition to applying the MBE criterion to the training
f acoustic models, we have applied it to discriminative
ature training. The preliminary experiment results indicate 
at feature-based MBE training is more effective than model-

ased MBE training. The segmentation accuracy could be
proved by integrating the feature-based and model-based
BE training procedures. Moreover, a new decoding
gorithm based on the minimum boundary error criterion is 
so under development. It is hoped that phone boundaries can 
e located more accurately by running a second pass search
sing the minimum boundary error criterion on the lattice 
enerated by a first pass conventional search. In our current

plementation, the phone boundary error function, defined in
q.(5), is calculated in the time frame unit for efficiency.
owever, more accurate segmentation may be achieved by
lculating boundary errors in actual time sample marks.
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