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Abstract
This paper focuses on acoustic modeling in speech recognition.
A novel approach how to build grapheme based acoustic mod-
els with conversion from existing phoneme based acoustic mod-
els is proposed. The grapheme based acoustic models are created
as weighted sum from monophone acoustic models. The influ-
ence of particular monophone is determined with the phoneme
to grapheme confusion matrix. Further, the context-dependent
acoustic models are being trained within the grapheme training
procedure. The decision tree based clustering approach is used
to tie similar states. A modified data-driven method for genera-
tion of grapheme broad classes needed during the initialization of
decision tree is being applied. The data-driven broad classes are
created using the grapheme based confusion matrix. All exper-
iments were performed with the Slovenian language (1000 FDB
SpeechDat(II) database), which is a highly inflectional language
with no fixed set of rules for grapheme to phoneme conversion.
The achieved results showed improvements of speech recognition
results with the proposed methods.
Index Terms: acoustic modeling, grapheme based, bootstraping,
confusion matrix, speech recognition.

1. Introduction
With modern technological development the automatic speech
recognition (ASR) systems are becoming more and more present
in everyday live. First real-life applications were mainly based on
isolated words recognition, thereafter the systems based on large
vocabulary continuous speech recognition (LVCSR) followed. But
there are still groups of languages, where there is a lack of methods
how to built a speech recogniser with performance comparable to
performance of an English LVCSR system (e.g. agglutinative lan-
guages, inflectional languages).

One of such languages is Slovenian, which belongs to the
group of south Slavic languages. It is a highly inflectional lan-
guage with a relatively free word order. These language’s pecu-
liarities results in a very large number of different words that can
be formed from one lemma. Approximately 10 time larger Slove-
nian vocabulary is needed to ensure the same out of vocabulary
rate as for English.

Phonemes are the smallest still distinguishable speech units
by humans and are as such usually used in speech recognisers. To
be able to link the orthographic transcription of a word with the
phoneme based acoustic models, a phonetic vocabulary is needed.
A phonetic vocabulary for a speech recognition system can be gen-
erated using a large spectrum of approaches, from manual ones to
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rent automatic methods. In case of highly inflectional lan-
es, the huge number of different words makes it unrealistic
anually build a phonetic vocabulary with high word coverage.
enian also belongs to the group of languages, with not yet
defined set of rules for grapheme to phoneme conversion. It

erefore not possible to assure sufficient accuracy of automatic
heme to phoneme conversion method. All these difficulties
up in additional error rate that is introduced in the speech

gnition system by the grapheme to phoneme conversion and
be in some cases as high as 30%[1].
One of the possible solutions is to use grapheme based acous-
models, as was proposed by Kanthak and Ney [2]. The
heme based speech recognisers were also successfully im-
ented for multilingual and crosslingual speech recognition
, 5]. The improvements gained by the grapheme based acous-
odels mainly depend on the language attributes – the com-

ity of grapheme to phoneme relations. Current grapheme
d acoustic modeling approaches [2, 4] are based on graphemes

the acoustic models’ initialization phase on. A new acous-
odeling approach for generation of grapheme based acoustic

els is proposed in this paper1. The idea is to use the existing
eme acoustic models, which are converted into the grapheme
d form. Thereafter the grapheme based acoustic models can
dditionally trained or included directly in the speech recog-
r. The first advantage of the proposed method is the possibility
sing the existing phoneme acoustic models to start with the
ing – many research sites have a large sets of high quality
eme acoustic models. The second advantage of the proposed
stic modeling method is that are acoustic models generated on
r basis than in the case of standard grapheme based training
edure.
In present ASR systems context dependent acoustic models
usually applied. One of the standard procedures to cope with
rge number of free parameters in context dependent acoustic
els is the decision tree based clustering [6]. The decision tree
case of phoneme based acoustic models initialized from pho-
broad classes that are usually manually generated accord-

to acoustic-phonetic properties of phonemes by an expert pho-
ian. In a last few years a few data-driven methods how to

te phonetic broad classes were proposed by different authors
, 9, 11, 10]. All are having some pros and cons. As acoustic-
etic properties have no direct representation in the grapheme

such decision tree initialization is non-representative. In the
heme acoustic modeling different data-driven methods how to
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generate the broad classes were applied [2, 3, 4]. In this paper
a data-driven approach for generation of grapheme broad classes
based on context-independent grapheme confusion matrix is used.
The basic idea for phoneme case was presented in [11]. The pro-
cedure is based on a known approach that proves to give good
results. It is also well suitable for generating multilingual decision
trees, which is of great importancy in present multi-cultural way
of communication.

The theoretical background of proposed method how to con-
vert phoneme based acoustic models into grapheme based version
is presented in Section 2. The proposed data-driven generation of
grapheme broad classes is described in Section 3. More details
about the speech database and experimental setup can be found
in Section 4 and 5. The evaluation of proposed methods in Sec-
tion 6 is done as comparison between the acoustic models for
phoneme baseline, grapheme baseline using different grapheme
broad classes and final grapheme system converted from phoneme
version. In this case the decision tree was initialized with the best
grapheme broad classes from the grapheme baseline example. The
conclusion and directives for future work are given in Section 7.

2. Conversion from phoneme to grapheme
acoustic models

The proposed method for generation of grapheme acoustic models
builds them from existing phoneme context-independent acoustic
models. A grapheme γ is calculated as:

γ =

NpX

i=1

wiφi (1)

where wi denotes the weight and the φi denotes the particular
monophone i. The number of monophones included in the con-
version is limited with Np. The Equation (1) can be evolved in
such a way that each component of a grapheme acoustic model
can be calculated as weighted sum. Thus, the grapheme means μ

are calculated as:

μγ =

NpX

i=1

wiμφi
(2)

where μγ represents the grapheme mean values, wi the weight
and μφi

the phoneme mean values. The grapheme variances v are
calculated as:

vγ =

NpX

i=1

wivφi
(3)

where vγ represents the grapheme variances, wi the weight and
vφi

the phoneme variances. The values of transition matrix are
calculated as:

αγ =

NpX

i=1

wiαφi
(4)

where αγ represents the element of grapheme transition matrix, wi

the weight and αφi
the element of phoneme transition matrix. The

last undefined value needed for generation of grapheme acoustic
models is the weight wi. It is defined as:

wi =
con(γ, φi)PNp

j=1
con(γ, φj)

(5)
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re con(γ, φi) is the number of confusions between the partic-
phoneme and grapheme. The number of confusions is derived
a phoneme to grapheme confusion matrix, which results from

oneme speech recogniser, where the development speech set
ing transcribed with graphemes.

Data-driven generation of grapheme broad
classes for decision tree initialization

applied method for generation of data-driven grapheme broad
ses is based on a modified version of the method presented in
. The basic idea is that during the speech recognition simi-
raphemes get confused more often than dissimilar ones. As
decision tree based clustering procedure ties similar states,
grapheme broad classes can be generated on this presump-
. The input data can be presented in the form of a grapheme
usion matrix, produced with a context-independent grapheme
ch recogniser. The grapheme confusion matrix is generated
ome speech data set, which size is approx. one tenth of the full
ing set. The similarity measure for including a grapheme in
road class can be defined as:

γi ∈ classj ,∃con(γi, γj) ≥ thdj ,

1 ≤ i, j ≤ G,
(6)

re γi denotes the current grapheme in the matrix row j. This
heme is classified into the current class classj . The total num-
of graphemes is denoted with G, whilst con(γi, γj) denotes
number of confusions between current grapheme γi and mas-
rapheme γj in the matrix row j. The master grapheme in
row j is the one that serves for comparison with all other

hemes in the same row.
The threshold value thdj in Equation (6) decides, if the
heme belongs to a particular broad class or not. It is defined

thdj = max con(γi, γj)weight,

1 ≤ i, j ≤ G; 0 ≤ weight ≤ 1,
(7)

re thdj denotes the value of the threshold for the current broad
s, maxcon(γi, γj) denotes the maximal number of confusions
matrix row and weight denotes the empirically chosen weight
een 0 and 1. In case when the maximal number of confusions
ry low (rare grapheme) and low weight is chosen, the thresh-
hdj could be 1 or even 0. To prevent such cases, an additional
ria should be defined as:

thdj < I ⇒ thdj = I. (8)

When the thdj value falls below the predefined number I , the
value becomes equal to empirical value I . In such a way, the
sion of all graphemes in one broad class is hindered.

4. Speech database
experiments were performed using the Slovenian 1000 FDB
chDat(II) fixed telephone database [12]. The SpeechDat

ect was initialized in the year 1996 and covers at the moment
e than 50 languages. All databases were generated according
e same standard and have identical structure. The objectives
peechDat databases are voice driven telephone applications.
Slovenian SpeechDat(II) database consists from 1000 speaker.



For each speaker 43 different utterances were recorded [13]. Alto-
gether, approximately 30.000 utterances were incorporated in the
training set.

Evaluation of generated acoustic models was performed using
6 different test scenarios defined in the SpeechDat(II) database:
A1-A6, Q1-Q2, I1, B1C1, O2 and W1-W4 [13]. The test set
consisted from 200 speakers. All test scenarios are based on iso-
lated or connected words recognition to exclude the influence of
language model on evaluation of acoustic models quality. The
original manually corrected phonetic vocabulary provided by the
SpeechDat database based on Slovenian SAMPA definition [14]
was used for evaluating the phoneme baseline system. The vocab-
ulary for grapheme based cases was generated automatically from
orthographic transcription of words. Both vocabularies had a full
coverage of test sets.

5. Experimental setup

This paper is focused on different basic acoustic units for speech
recognition. To be able to give a fair evaluation of speech recog-
nition performance, the same training procedure should be used
for all acoustic model types. In our case, the following procedure,
which only differs in the acoustic model type and the version of
broad classes, was used.

The feature files produced from speech signal had 12 MFCC
coefficient plus the energy. With the first and the second deriva-
tive, the final size of 39 elements was achieved. The acoustic
models are three state left-right hidden Markov models (HMM),
with Gaussian continuous density probability function. The HTK
toolkit was used for the experiments [15]. The Slovenian phoneme
baseline system had 46 different allophones, while both grapheme
based system included 25 Slovenian graphemes.

The first training cycle was based on initialization of all acous-
tic models with the same global values. Stepwise the num-
ber of mixtures was increased to 32 Gaussian. These context-
independent acoustic models were used for forced realignment,
which results in improved transcriptions of speech material.

The second training cycle was based on particular initializa-
tion for each acoustic model. Again, the number of mixtures was
stepwise increased. The final context-independent acoustic mod-
els, which were used for generating different confusion matrices,
had 32 mixtures. The context-dependent acoustic models were re-
fined using the decision tree based clustering procedure, initial-
ized with different types of broad classes. For phoneme acous-
tic models, the broad classes were defined by an expert, accord-
ing to acoustic-phonetic properties of Slovenian. For grapheme
acoustic models, data-driven broad classes were used. Four dif-
ferent weight values were chosen: 0.05, 0.10, 0.15, 0.20. The fi-
nal context-dependent acoustic models used for evaluation had 32
Gaussian mixtures per state and similar complexity.

The conversion from phoneme to grapheme acoustic models
was done with the monophone models with 1 Gaussian probabil-
ity density function per state. The data-driven grapheme broad
classes with the best speech recognition performance for grapheme
baseline were included in the decision tree based clustering. The
most noticeable contribution of phoneme to grapheme conversion
method for higher values of Np was observed for vowel modeling,
where particular general vowel (e.g. [a]) has various variants (e.g.
long [a:], short [a]).
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6. Speech recognition results
e various types of acoustic models were involved in the speech
gnition tests. The phoneme acoustic models were used as
line. The grapheme acoustic models were first used to de-
ine the best proposed data-driven broad classes, but they were
used as the second baseline. The third type of acoustic mod-
ere the proposed grapheme acoustic models converted from

ting phoneme acoustic models. All tests were performed with
arious test scenarios, described in Section 4. The results are

n in the form of the word error rate (WER).

Phoneme baseline

first evaluation step was devoted to phoneme baseline (Table
he average word error rate AWER is also reported in the last

mn.

le 1: Speech recognition results (WER) for phoneme baseline.

A Q I B O W AWER

n 2.90 0.87 5.70 5.21 7.81 18.56 6.84

The achieved results for phoneme baseline are in range of sim-
ASR systems. The WER was the lowest (0.87%) for the sim-
t test set with yes/no answers. The most complex test set was
ith WER as high as 18.56%. The average word error rate for
eme baseline system was 6.84%.

Grapheme baseline with data-driven initialization of de-
n tree

grapheme baseline ASR system was also used to evaluate the
osed data-driven method for generation of broad classes. Four
rent threshold values thdj were used. The WERs are pre-

ed in Table 2.

e 2: Word error rates for grapheme baseline with different
-driven broad classes.
ht A Q I B O W AWER

2.90 0.29 4.15 4.38 6.70 14.97 5.57
2.80 0.29 5.70 4.63 7.25 15.51 6.03
2.90 0.29 4.15 4.56 5.70 15.11 5.45
3.08 0.29 4.15 4.49 6.70 15.24 5.66

The performance of grapheme baseline with data-driven broad
ses in general improved over the phoneme baseline. The best
age WER was 5.45% (weight = 0.15), which is a 20.32% rel-

decrease. The worst grapheme system with weight = 0.10
average WER of 6.03% still performs better (11.84% relative
rovement) than phoneme baseline. The analysis of various test
hows similar relation between the scenarios. The best result
9% WER) was achieved with the Q test set, while the worst
lt of 15.51% WER was obtained for the W test set. In some
scenarios different weights produced the best result. This is
ably caused by the discrepancy between the development and
set.

Phoneme to grapheme conversion

context-dependent converted grapheme acoustic models were
ed only with the best data-driven broad class with the thresh-



old value weight = 0.15. The conversion from phoneme acoustic
models to grapheme acoustic models was done for Np values 1
and 3. The speech recognition results are presented in Table 3.

Table 3: Word error rates for converted grapheme acoustic models
with Np values 1 and 3.

Np A Q I B O W AWER

1 2.62 0.58 4.15 4.63 5.70 15.16 5.47
3 2.15 0.29 4.05 4.38 5.60 14.33 5.13

The first row of Table 3 (Np = 1) shows the speech recogni-
tion results for the case, where only one phoneme acoustic model
was involved in conversion to individual grapheme acoustic model.
The achieved performance was very similar to the performance of
grapheme baseline with weight = 0.15. The best result was again
achieved for the Q test set (0.58% WER), while the worst result
was with phonetically balanced words - 15.16% WER.

The second row of Table 3 presents the last speech recogni-
tion results, with Np = 3. An improvement of performance can
be observed. The average word error rate (AWER) decreased
for 5.87% relatively – from 5.45% to 5.13%. The main improve-
ment was achieved for the A test set (2.15% WER) and W test set
(14.33% WER). There was no improvement for the Q test set and
B test set.

If we compare the best results with converted grapheme acous-
tic models with phoneme baseline, it can be seen that the average
word error rate decreased for 25.00% relatively. The improve-
ment was most noticeable for the hardest test sets W and O, where
the WER decreased from 18.56% to 14.33% and from 7.81% to
5.60%.

Summarization of achieved results shows a clear advantage
in the usage of grapheme acoustic models. The improvement in
speech recognition performance is even more noticeable in the
case, when converted grapheme acoustic models were used. Be-
side the improvement in performance, such acoustic models have
two additional important advantages. The first one is that the pho-
netic vocabulary is not needed for the testing and the on-line op-
eration. This is very useful for languages, where the grapheme to
phoneme conversion presents a non-trivial task. The second ad-
vantage is that existing (high quality) phoneme acoustic models
can be used for conversion to grapheme acoustic models. In such
a way, the training procedure can be simplified and shortened.

The modified method for data-driven generation of grapheme
broad classes with confusion matrix also achieved good perfor-
mance. Already the worst result was better than the phoneme
baseline. Data-driven grapheme broad-classes can be very easy
adopted to a new grapheme set or even language, as almost no
expert knowledge is needed. The disadvantage of the proposed
method for data-driven generation of broad classes is the empiric
way of selecting the optimal weight value.

7. Conclusion
This paper presented a novel approach for acoustic modeling in
speech recognition connected with the usage of grapheme acous-
tic models. The approach is dealing with conversion from existing
phoneme acoustic models to grapheme acoustic models. A signif-
icant improvement of speech recognition results was achieved.

The disadvantage of proposed method lies in the nature of gra-
pheme acoustic modeling. Its efficiency is highly tied with the at-
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tes of language and their grapheme to phoneme relationship.
future work will be connected with improvements of conver-
procedure and port to multilingual speech recognition envi-
ent.
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