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Abstract
This work reports our research efforts towards developing effi-
cient equipment for the automatic acoustic recognition of in-
sects. In particular, we discuss the characteristics of the acoustic 
patterns of a target insect family, namely the cricket family. To 
address the recognition problem we apply a feature extraction 
methodology that has been inspired by well documented tactics 
of speech processing, which were adapted here to the specifics 
of the sound production mechanism of insects, in combination 
with state-of-the-art speaker identification technology. We apply 
this approach to a large and well documented database of fami-
lies and subfamilies of cricket sounds, and we report results that 
exceed 99% recognition accuracy on the levels of family and 
subfamily, and 94% on the level of a specific insect out of 105 
species. We deem this equipment will be of practical benefit for 
non-intrusive acoustic environmental monitoring applications as 
it is directly expandable to other insect species.  
Index Terms:  bioacoustics, insects, identification 

1. Introduction 
There are more than 900,000 known insect species and there 
may be as many as ten times that number yet to be identified, 
forming the largest ecological group on Earth. Beyond the scien-
tific interest of investigating the diversity of biological organ-
isms, insects have great economic importance as beneficial or-
ganisms in agriculture and forestry (insects play significant role 
in the food chain of other species and the fertility of plants). 
However, a number of insect species also have negative contri-
bution to agricultural economy as they constitute a threat to 
plants and crops. 

Insects are mainly identified by their appearance and sound 
production that are species-specific. The detection and species 
recognition of insects are usually carried out manually, using 
trapping and observation methods. The detection and identifica-
tion process is in most cases a highly complex procedure be-
cause insects are heard more often than seen or trapped (espe-
cially those that live in complex environments or demonstrate 
nocturnal activity). Moreover, the development of human exper-
tise to capture taxonomic information is costly both in time and 
money and requires the construction of expensive reference 
collections of fragile insect specimens and comprehensive litera-
ture sources. Non-experts have great difficulty practicing taxon-
omy while participating in the construction of biological inven-
tories, even for routine identifications. 

Recent progress in computer technology as well as in signal 
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cessing and pattern recognition has introduced the possibil-
of automatically identifying species primarily on the basis of 
turing subtle differences by means of image [1-3] and acous-
signal processing [4-6]. However, the application of pattern 
ognition and machine learning techniques to this kind of 
blem is still in its infancy. 
In brief, acoustic identification of insects is based on their 

lity to generate sound either deliberately as a means of com-
nication or as a by-product of eating, flight or locomotion. 
vided that the bioacoustic signal produced by insects follows 
onsistent acoustical pattern that is species-specific, it can be 
ployed for detection and identification purposes. 
In the present contribution, we address a bioacoustic signal 
sification problem by exploiting technology that was ini-

ly developed for speech recognition, and afterwards success-
y adapted for the needs of speaker recognition. In particular, 
adopting the statistical learning techniques inherent to 

aker identification [7], we aim at categorizing acoustic re-
dings to specific families and subfamilies of insects, as well 
t identifying the definite species. However, the applicability 
hese techniques and especially the feature extraction proce-
e is not straightforward, as the spectral patterns of insect 
nds differ to a great extent from those of speech, mainly due 
he different sound production process (insects do not possess 
al tract and do not use their mouth to produce vocalizations).
The selected target groups of insects to be identified are 
ilies, sub-families and specific species of crickets mainly 
 the singing insects of North America collection (SINA) 

 This group has been chosen because the SINA project pre-
ts a large and representative collection of cricket sounds of 
rth America that are identified and tagged by scientists of 
siderable experience in identifying the taxonomy of insect 
cies.  
The long term objectives of this work are:  
he development of a pilot automatic detection/ identification 
quipment capable of detecting/identifying insect species. 
rogressively, this equipment can be extended to other living 
rganisms that are able to produce consistent acoustic pat-
erns. This will allow unmanned, non-invasive acoustic sur-
eying and environmental monitoring, which will cost-
ffectively assess and categorize the biological diversity of 
arge regions.  
he recognition of a wide range of taxa by non-specialists. 
utomatic acoustic identification of pests and selective acti-
ation of repelling mechanisms based on ultrasound emission, 
hich is tuned to specific insects. 

September 17-21, Pittsburgh, Pennsylvania



2. Sound production in insects 
There is a specific number of behavioural modes that have been 
observed in connection with sound production in insects. The
first mode includes those situations in which the insects produce
sounds to attract the female mates into close proximity (e.g.
crickets produce the so called ‘courtship’ or ‘mating’ songs) or 
to cause the female to produce a sound that will help the male to
locate her (slant-faced grasshoppers) or cause congregation of
large numbers of males and females (cicadas). The second gen-
eral behavioural mode consists of the situations in which (fol-
lowing [9]): a) the sound is produced as a reaction to the pres-
ence or activities of other organisms. In particular, males, fe-
males, or immature insects produce acoustic emissions in order
to declare their disturbance (when captured and held or because
of the presence of another organism), or warn other insects of
danger, b) a male insect may sing in order to let other males 
know that an area is his territory, (i.e. mark their territory gener-
ally called ‘warning’, ‘intimidation’ or ‘fight’ sounds), c) a fe-
male produces acoustic emissions in the presence of a male of 
the same species.

Besides the sound generation as a means of communication,
sound can be produced non-intentionally as a result of eating,
flying or locomotion. The sound production mechanism in in-
sects can be summarized as: muscle power contraction leading
to mechanical vibration of the sound-producing structure and 
finally to acoustic loading of this source and sound radiation
[10], [11].

Sounds are produced by insects in five different ways [9]:
1. Stridulation: the friction of two body parts; usually heard as

chirping, i.e., (crickets, katydids, grasshoppers, bugs, beetles,
moths, butterflies, ants, caterpillars, beetle larvae, others)

2. Percussion: by striking some body part, such as the feet 
(band-winged grasshoppers), the tip of the abdomen (cock-
roaches), or the head (death-watch beetle) against the sub-
strate usually heard as tapping or drumming

3. Vibration: the oscillation of body parts such as wings; usu-
ally heard as humming or rumbling by vibrating some body
part, such as the wings, in air (mosquitoes, flies, wasps, bees,
others)

4. Tymbal Mechanism: the quick contraction and release of
tymbal muscles (vibrating drum-like membranes); usually
heard as a series of clicking sounds (cicadas, leafhoppers,
treehoppers, spittlebugs)

5. Air Expulsion: the ejection of air or fluid through a body
constriction; usually heard as a whistle or hiss (short-horned
grasshoppers).
In Fig. 1 we depict characteristic spectrograms of some of 

these sound production mechanisms.

2.1 The acoustic profile of cricket sounds
Crickets (the male ones) produce sounds by stridulating (by
rubbing their wings together). They produce a short repertoire of 
consistent acoustic patterns, which are characterized by a modu-
lation around a dominant frequency. Their sound pattern con-
sists of pulsations well localized both in time and frequency. In
some species these impulsive sounds form packets (phrases), 
which are repeated rhythmically (see Fig. 2). Some the most
essential acoustic clues for differentiation among similar fami-
lies, subfamilies, and specific species are the:

a) dominant harmonic,

b)
c)
d)
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 rhythm and duration of pulsations,
 spread of spectral energy around the dominant harmonic,
 energy of the overtones.
 most challenging task is to classify cricket species belong-

 to the same family and subfamily as their tonal characteris-
 bear resemblance to each other. In Fig. 2 we depict spectro-
ms of members of the same subfamily (top right and top left 
res, the subfamily Trigonidiinae) and different subfamilies

ttom left and right figures, subfamily Oecanthinae and sub-
ily Nemobiinae). Another difficulty is that some species
it a very sparse representation of their signal in the time-
uency domain (e.g. subfamily Eneopterinae). Finally, the

sations per unit time are dependent on the environmental 
ings (e.g., temperature, humidity) while the fundamental 
ains fairly unchanged even in different behavioural modes. 
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ure 1 Spectrograms of members of different insect families
ing different sound production mechanisms
 left: Stridulation: Katydid
 right: Tymbal: Cicada
tom left: Vibration: Asian tiger mosquito
tom right: Air Expulsion: Short-horned grasshopper
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ure 2 Spectrograms of cricket sounds 
 left: Subfamily Trigonidiinae, Anaxipha delicatula member
 right: Subfamily Trigonidiinae, Anaxipha n. sp. member 
tom left: Subfamily Oecanthinae, Oecanthus exclamationis
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3. Insect recognition
In Fig. 3 we present a diagram illustrating the acoustic insect
recognition process. This process consists of two main steps: 
acoustic signal parameterization and classification. While the
parameterization aims at computing descriptors which account 
for the useful information in the signal, the classification stage
compares the input feature vectors with predefined models of
the target classes. A final decision is made depending of the 
degree of proximity between the input and the models.

In this section, we discuss two signal parameterization ap-
proaches. The first one is similar to the speech parameterization
concept and utilizes fixed-size frame segmentation with a fixed
degree of overlap among the subsequent segments. The second
one is based on variable-size framing, which considers each
active part of the signal (corresponding to bursts of pulsations), 
as an independent event. Each event is treated as one integral
chunk and is processed independently from all other events. In 
the following, we describe the steps of the variable-size frame
parameterization followed by the fixed-size frame case.
Step 1: Pre-processing of the input signal: Consists of mean 
value removal and amplitude normalization through automatic 
gain control applied to the time-domain signal.
Step 2: Signal segmentation: It is based on an ultra-short-time
energy detector, which estimates the energy Euse for small non-
overlapping groups of successive samples as:

2

1
( ) ( ) , 0,..., 1,

L

use
i

E k x kL i k M

sample size of the DFT equals the size of the chunk. When the 

(1)

where x is the input signal, k is the group index, L is a prede-
fined group size, and M=N/L is the number of frames in a re-
cording with length N samples. The Euse(k) contour is further 
used as input for the detector of acoustic activity. Since the sub-
sequent estimates of the energy are for non-overlapping groups, 
the precision of the detected borders depends on the group size 
L. In the present work, we consider L=5 (equivalent to time
resolution ~110 µsec at 44100 Hz sampling frequency), which 
provides a good trade-off between time resolution and computa-
tional demands. Fig. 4 provides an illustration for the case of 
variable-size frame segmentation.
Step 3: Composition of the feature vector: Each segment is
subjected to short-time discrete Fourier transform (STDFT). The 
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Figure 4 An example for variable-size frame segmentation
(the ordinate stands for magnitude and the abscissa for time in sec)
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gth of a segment is smaller than 2048 samples, we perform 
o padding. This provides a frequency resolution of ~22 Hz. 
rder to reduce the computational demands an upper bound of

 sec segments is set. The frequency range is restricted to
0 kHz where most of the cricket activity takes place. Fur-

rmore, we apply a filter-bank consisting of B=80 equal-
dwidth and equal-height filters on the logarithmically com-
ssed power spectrum. The centres of the linearly spaced fil-
 are displaced 100 Hz one from another, and serve as bound-
 points for the corresponding neighbouring filters. We have
sen linear spacing (equal frequency resolution) because in-
ts in general can produce sounds in frequencies anywhere in
 acoustic spectrum (and some at ultrasound) in contrast to the
ech signal where most of the energy is concentrated in the
-frequency formant area. The next step is the decorrelation

the log-energy filter-bank outputs Xi via the discrete cosine 
sform (DCT): 

1
cos ( 1 2) , 1,..., ,

B

j i
i

LFCC X j i j J
B

(2)

ere j is the index of the linear frequency cepstral coefficients

egmentation, we performed 

e-

CC). A series of feature selection tests have shown that the 
t 24 (J=23) cepstral coefficients are sufficient to carry out the
ognition task and the contribution of the higher order LFCCs 
 a minor impact on the recognition performance. The 0-th
stral coefficient was excluded from the feature vector as we 
 not want any dependence on the field recordings setup. Fi-
ly, for each segment the final feature vector is composed of
he dominant harmonic f0 that is estimated via search of the
ximum magnitude in the power spectrum, b) segment dura-
 lseg, and c) the 23 LFCCs. The time lag between pulsations

not used as a feature mainly because crickets vary their
thm of pulsations due to temperature variations.
p 4: Features post-processing: Cepstral mean subtraction
 dynamic range normalization.
In the case of fixed-size frame s
previously described feature extraction steps using a frame

lseg=100 msec with 90% overlapping among the successive
es. The feature extraction is applied on the active segments

cted by the acoustic activity detector described in Step 2.
The normalized feature vectors obtained either for variabl

fixed-size frames are fed to the GMM-based classifier. As
sented in Fig.3 for each of the target classes a GMM  is con-
red. The class-specific diagonal covariance GMMs are

ned by employing a standard version of the expectation 
ximization algorithm [12]. Different number of Gaussians, 
ging from 8 to 256, is employed for the different classes to
ter fit the underlying distributions. During the classification
cess, we compute for each trial class-conditional probabili-
 from all models. The Bayesian decision rule is applied to
ect the winning class [7].
Figure 3 Diagram of the acoustic insect recognition process for N distinct classes
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4. Experiments and results
We were interes y (specific

102 spe-

es of North Mexico crickets {Eneopterinae (9),

subfamilies of North

ted in Fig. 5. Specifically,
Fig

5. Conclusions
Despite two centurie  the overwhelming 

ted in identifying the entire hierarch
species, subfamily, family, etc) to which specific recordings
belong. Thus, experiments aiming at identification of:

three different families {North Mexico Gryllidae (
cies), North Mexico Gryllotalpidae (4), and crickets from Ja-
pan (26)1},
six subfamili
Gryllinae (22), Mogoplistinae (17), Nemobiinae (20), Oecan-
thinae (17), and Trigonidiinae (17)},
and 105 species that belong to the six
Mexico crickets, were performed.
The experimental results are presen
. 5(a) presents comparison between the signal parameteriza-

tion approaches discussed in Section 3, and Fig. 5(b) presents
the accuracy gain due to combining various parameters. The 
results depicted in Fig. 5(a) demonstrate the advantage of the
variable-frame analysis that allows finer analysis of the spec-
trum of the quasi-stationary insect sounds compared to the fixed 
frame case. Figure 5(b) reports results on different features sets 
and how the recognition accuracy scales when we append them.

The recognition results prove that: (1) the significance of the
dominant frequency as a main clue for insect recognition, and
(2) segment duration and spectral energy distribution around the
dominant carry useful supplementary information.

s of taxonomic activity
majority of species in most ecosystems remains unidentified,
while only a small number of highly trained specialists are able
to make any identification [1]. In this work we address the task
of the acoustical identification of insects by elaborating signal
parameterization methods and state-of-the-art pattern matching
techniques in a manner that resembles the methodology of
speaker recognition. The presented automatic identification
system is based only on the acoustic modality and demonstrated 
to be highly accurate in recognizing the family, subfamily and
specific members of a target insect.
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