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Abstract
Cross-system adaptation and system combination methods,

such as ROVER and confusion network combination, are

known to lower the word error rate of speech recognition

systems. They require the training of systems that are rea-

sonably close in performance but at the same time produce

output that differs in its errors. This provides complemen-

tary information which leads to performance improvements.

In this paper we demonstrate the gains we have seen with

cross-system adaptation and system combination on the En-

glish EPPS and RT0-05S lecture meeting task. We obtained

the necessary varying systems by using different acous-

tic front-ends and phoneme sets on which our models are

based. In a set of contrastive experiments we show the influ-

ence that the exchange of the components has on adaptation

and system combination.

Index Terms: automatic speech recognition, system com-

bination, cross adaptation, EPPS, RT-05S.

1. Introduction
In state-of-the-art speech recognition systems it is common

practice to use multi-pass systems with adaptation of the

acoustic model in-between passes. The adaptation aims at

better fitting the system to the speakers and/or acoustic en-

vironments found in the test data. It is usually performed on

a by-speaker basis, obtained either from manual speaker la-

bels or automatic clustering methods. Common adaptation

methods try to transform either the models used in a system

or the features to which the models are applied.

Three adaptation methods that can be found in many

state-of-the-art systems are Maximum Likelihood Linear

Regression (MLLR) [1], a model transformation, Vo-

cal Tract Length Normalization (VTLN) [2] and feature-

space constrained MLLR (fMLLR) [3], two feature-

transformation methods. Adaptation is performed in an un-

supervised manner, such that the error-prone hypotheses ob-

tained from the previous decoding pass are taken as the nec-

essary reference for adaptation. Generally, the word error

rates of the hypotheses obtained from the adapted systems
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lower than those for hypotheses on which the adaptation

performed. This sequences of adaption and decoding

e it possible to incrementally improve the performance

he recognition system. Unfortunately, this loop of adap-

n and decoding does not always lead to significant im-

ements. Often, after two or three stages of adapting a

em on its own output, no more gains can be obtained.

s problem can be overcome by adapting a system S2 on

output of a different system S1, a process commonly re-

ed to as cross-system adaptation. It is believed that the

s from cross-system adaption come from the fact that S1

es different errors than S2. S2 thus gets complementary

rmation that it could not gain from its own output. It is

possible to utilize the complementary information con-

ed in hypotheses from different recognition systems by

g system output combination methods, such as ROVER

and confusion network combination (CNC) [5].

For both methods it is necessary to build multiple sys-

s that are reasonably close in performance to each other,

which produce hypotheses with complementary knowl-

e. We report on our experiences with adapting across

ems which vary in phoneme set and acoustic front-

, and the combination of outputs using CNC. We report

compare results on the English European Parliamentary

eches Task [6] and the Lecture Room task of the NIST

h Transcription 2005 Spring Meeting Recognition Eval-

on (RT-05S). The next section describes previous related

k and how our work differs from it. Section 3 describes

compares the two phoneme sets used for the experi-

ts, while Section 4 introduces the acoustic front-ends

lied in our experiments. Section 5 provides the results

he experiments.

2. Related Work

their NIST 2004 Fall Mandarin Broadcast News evalua-

system [7], Yu et al. used two different kinds of models;

set based on phonemes, the other based on initial-final

i-syllables. The two sets of models were used for cross-

ptation and for system combination. In our work, all
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sets of models are based on phonemes, since for English

syllable-based models have generally been found not to be

competitive with phoneme-based models.

In [8], Stolcke et al. used two different kinds of front-

ends, one MFCC and one PLP based, for cross-adaptation

and system combination via confusion networks. They did

not change their phoneme set for the different systems,

while we varied the phoneme set for the models. We fur-

ther used an MVDR front-end instead of a PLP front-end,

since we found it to be superior to PLP in many tasks.

Lamel and Gauvain experimented in [9] with different,

either reduced or extended, versions of the same phoneme

set, used them in a cross-adaptive way and combined the

system results with ROVER. Though the performances of

the different phoneme sets were basically the same, ROVER

gave a significant improvement. The front-ends remained

unchanged. Also, the dictionaries for the different phoneme

sets were essentially created from the same base dictionary,

while in our experiments the dictionaries for the phoneme

sets were derived from differing base dictionaries, and miss-

ing pronunciations were created with differing tools.

3. Phoneme Sets and Dictionaries
3.1. Phoneme Sets

(We use the term phoneme rather than phone because even

though the described sets include a few allophones, they

are working on phoneme level.) We experimented with the

CMU dictionary - CMUDICT, and LDC’s Call Home dic-

tionary - Pronlex. Our version of CMUDICT consists of 45

phonemes and allophones and our version of Pronlex con-

tains 44 phonemes and allophones. Despite using a slightly

different approach regarding the symbols used to represent

the phonemes, the inventories are the same for the five diph-

thongs or vowel-glide sequences {eoYOW} {EY OW AY

OY AW}, nine fricatives {szSZfvTDh} {S Z SH ZH F V

TH DH HH}, two affricates {CJ} {CH JH}, six plosives

{pbtdkg} {P B T D K G} and three nasals {mnG} {M N

NG}. Both systems contain the seven vowels {iIE@acU}
{IY IH EH AE AA AO UH}. We used the extended Pronlex

set to include {A u} which map to the already existent {AH

UW} in CMUDICT (e.g. the vowels in “two” and “hut”).

There are four approximants {lrwy} {L R W Y} in both

systems. Pronlex additionally allows for an allophone of the

voiced velar approximant {w}: a voiced velar approximant

with initial velar friction noted as {H} (it sounds like a /h/

followed by /w/). CMUDICT only uses {W} which denotes

the version with more initial friction and the version without

friction. The systems also differ in the number of reduced or

centralized vowels: CMUDICT uses {IX} for centralized /i/

(for example, in the last syllable of “laughing”) but also uses

a symbol for a short lowered closed front vowel: {IH}. In

Pronlex both the lowered close front vowel and the central-
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version of it are labeled with {I}. Both systems provide

bols for the mid central vowel {x} {AX} (e.g. the final

nd in “Maria”) and the open central vowel {R} {ER}
. in “hurt” or the final sound in “father”). However, our

nded version of CMUDICT differentiates between the

final sounds of “father”: {ER} and “answer”: {AXR}.

Dictionaries

necessary pronunciation dictionaries for training and

ing were created in different ways for the two differ-

phoneme sets. In the case of the Pronlex phoneme

the initial version of all lexicons was a merger of

Callhome english lexicon 97061 and the LIMSI SI-284

ing dictionary. Frequent missing words were added

hand, all other words were generated with the help

illiam Fisher’s grapheme-to-phoneme tool available

ugh NIST [10]. For the CMUDICT phoneme set, we

the dictionary from the ISL Meeting Transcription

tem [11] as a base dictionary and created missing pro-

ciations using Festival [12].

4. Acoustic Front-Ends
ur experiments we used four different kinds of acous-

front-ends: MFCC-I, MFCC-II, MVDR-I, and MVDR-
wo are based on the traditional Mel-frequency Cep-

l Coefficients (MFCC) and two are based on the warped

imum variance distortion less response (MVDR). The

nd front-end replaces the Fourier transformation by a

ped MVDR spectral envelope [13], which is a time do-

n technique to estimate an all-pole model using a warped

rt time frequency axis such as the Mel scale. The use of

MVDR eliminates the overemphasis of harmonic peaks

cally seen in medium and high pitched voiced speech

n spectral estimation is based on linear prediction.

For training, both front-ends have provided features ev-

10 ms. During adaptation and decoding this was some-

s changed to 8 ms. In training and decoding, the fea-

s were obtained either by the Fourier transformation fol-

ed by a Mel-filterbank or the warped MVDR spectral

elope.

We used a model order of 80 for the MVDR-I front-end.

resulting 129 spectral coefficients were then reduced to

ith a linear filterbank. Since the warped MVDR already

ides the properties of the Mel-filterbank, namely warp-

to the Mel-frequency and smoothing, a filterbank has

been used for the MVDR-II front-end and the model

r was just 22. The advantage of this approach is an

ease in resolution in low frequency regions. This can-

be attained with traditionally used Mel-filterbanks and

qual modeling of spectral peaks and valleys used to im-

e noise robustness, due to the fact that noise is mainly

ent in low energy regions.



Acoustic Front-End
MFCC-II MVDR-II

Phoneme Set 8ms 10ms 8ms 10ms

CMU 13.7% 14.0% 13.8% 13.7%

Pronlex 14.6% 14.6% 14.6% 15.0%

Table 1: Result Overview of the cross adaptation experiments for

the EPPS task. Adaptation is performed on the CNC output from

the second stage of the adaptation scheme.

For all front-ends, VTLN was applied either in the lin-

ear domain for MFCC-I and MFCC-II, or in the warped

frequency domain for MVDR-I and MVDR-II. The MFCC

uses 13 cepstral coefficients while for the MVDR the num-

ber of cepstral coefficients has been increased to 15 (EPPS)

or 20 (RT-05S). The mean and variance of the cepstral

coefficients were normalized on a per-utterance basis. In

the case of MFCC-I, MVDR-I, and MVDR II, seven ad-

jacent frames were combined into one single feature vec-

tor. For MFCC-II the cepstral coefficients were combined

with normalized signal energy, approximations of the first

and second derivative, and zero crossing rate. For MFCC-I,

MVDR-I, and MVDR-II, the resulting feature vectors were

then reduced to 42 dimensions using linear discriminant
analysis (LDA). LDA was applied to MFCC-II without di-

mension reduction.

5. Experiments
All experiments were performed with the help of the Janus

Recognition Toolkit (JRTk) featuring the IBIS single pass

decoder [14]. The systems described below have, at least in

part, been used for the Spring 2006 TC-STAR EPPS evalu-

ation [15] and the RT-06S Lecture Task [16].

5.1. European Parliamentary Speeches

The European Parliamentary Speeches Task (EPPS) focuses

on transcribing speeches given in the European Parliament.

The word error rates in the experiments reported below were

measured on the official 2006 development set, which con-

sists of three hours of speech from 41 politicians. The

acoustic models were trained on the official EPPS train-

ing data which consists of about 100 hours of transcribed

speech from politicians and interpreters. Before starting the

cross-system adaptation experiments we first ran two adap-

tation stages which used only CNC for system combination.

In the first stage we performed two decodings with speaker

independent systems. Both use the Pronlex phoneme set

based dictionary, but one utilizes the MVDR-II front-end,

while the other uses the MFCC-I front-end, both with a

frame shift of 10 ms. The two outputs are then combined

using CNC. Then, in the second stage, three acoustic mod-

p

3

4

4

Tab
05S

adap

syst

els a

VTL

tion

on t

end

are

pho

sult

diff

stag

the

sets

and

wer

shif

whi

men

the

tion

the

sche

tatio

can

ever

furt

valu

5.2.

For

CM
ent

furt

on t

to th

clos

train

mee

ture

16,0

of 6

523

INTERSPEECH 2006 - ICSLP
ass CMU-I CMU-II PRON-MVDR CNC

rd 24.9% 25.4% 23.9%

th 25.0% 24.8% 23.8%

th 24.6% 23.2%

le 2: Results Overview of cross system adaptation on RT-

-eval. The Pronlex system uses an MVDR front-end and was

ted on the CNC output of the 3rd pass. CNC with the Pronlex

em was done by using also the lattices of the 3rd pass systems.

re adapted on the first stage’s CNC output using MLLR,

N, and fMLLR. All three systems use the Pronlex Dic-

ary. One system is based on the MVDR-I front-end, one

he MVDR-II front-end, and one on the MFCC-I front-

, all three using an 8 ms frame-shift. Again, the results

combined with CNC, yielding a WER of 14.8%.

In order to examine the effect of adaptation across

neme sets, we ran eight contrastive experiments, the re-

s of which are summarized in Table 1. We adapted eight

erent systems on the output of the CNC in the second

e. Four of them are based on the Pronlex phoneme set,

other four on the CMU phoneme set. For both phoneme

we used one system based on the MFCC-II front-end

one based on the MVDR-II front-end. Both front-ends

e adapted and tested with an 8 ms and a 10 ms frame-

t. Since in the first two stages only systems were used,

ch were based on the Pronlex phoneme set, the experi-

ts with the systems now using CMU’s phoneme set in

third stage show the effect of cross phoneme-set adapta-

. The experiments with the Pronlex-based systems in

third stage correspond to the conventional adaptation

me.

As can be seen from the results, another round of adap-

n using the Pronlex systems does not give any signifi-

t gain in word error rate (0.2% abs. at maximum). How-

, adapting a system based on the CMU phoneme set,

her reduces the word error rate by up to an absolute

e of 0.9% to 13.7% in the best case.

Lecture Task

the lecture task, we cross-adapted systems (CMU-I and

U-II) based on the CMUDICT phoneme set with differ-

front-ends (MFCC-I and MVDR-II) until we received no

her gains. We then added a system PRON-MVDR based

he Pronlex phoneme set using the MVDR-II front-end

e cross-adaptation. The experiments were done on the

e talking condition of NIST’s RT-05S evaluation data.

All systems, CMU-I, CMU-II and PRON-MVDR were

ed on approximately 100 hours of data, consisting of

tings from ICSI and CMU, TED lectures and CHIL lec-

s. The resulting MVDR and FFT systems had nearly

00 distributions over 4,000 models with a maximum

4 Gaussians per model, the Pronlex system 24,000 dis-



tributions over 3,000 models, also with a maximum of 64

Gaussians per model. All systems were trained with either

ML-SAT or FSA-SAT and use the same vocabulary and lan-

guage models for decoding.

Table 2 shows a part of our RT-06S evaluation system.

As can be seen, the cross-system adaptation of the CMU-I

and CMU-II system leads to no further improvements. Even

though the CMU-II system improves in the fourth pass by an

absolute value of 0.6%, the confusion network combination

of the lattices of the same pass only changed by 0.1%. But

if we adapt the PRON-MVDR system on the CNC output

of the third pass and do a confusion network combination

on the lattices from the CMU-I and CMU-II system of the

third pass and the Pronlex system in the fourth pass, we can

improve the CNC output by an absolute value of 0.7%.

6. Conclusions
In decoding set-ups in which the models of the system are

incrementally adapted on the output of previous decoding

passes, the models are often saturated after two or three it-

erations of adaptation. Further adaptation steps on the out-

put from the same system yield no more significant gains.

However, when using the output of systems that differ in

some components, it is possible to obtain further gains

due to complementary knowledge. In our experiments we

have shown how systems with different phoneme sets and

acoustic front-ends can be used in a cross-system adapta-

tion scheme in order to get higher gains out of adaptation.

Further we have shown how the outputs from the different

systems can be combined using confusion network combi-

nation, leading to further reductions in word error rate.
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Schlüter, and Hermann Ney, “Cross domain automatic tran-
scription on the tc-star epps corpus,” in ICASSP, Philadel-
phia, PA, USE, 2005.

Hua Yu, Yik-Cheung Tam, Thomas Schaaf, Sebastian Stüker,
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