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Abstract
In this paper we present a novel ASR system combination

technique able to combine systems producing word graphs of dif-
ferent structure and with different segmentations. The new method
is based on the definition of a time frame-wise word error cost
function in a minimum Bayes risk framework. In contrast to
confusion network combination (CNC), it preserves both the word
graph structure and the word boundaries.
First experimental results are presented on the European Parlia-
ment Plenary Sessions (EPPS) task for European Spanish and
British English. The new approach to system combination is com-
pared to both ROVER and CNC. In addition, we also apply data-
driven weighting schemes for all system combination approaches
addressed in this work. For the experiments presented, a variety
of internal systems as well as an additional external system were
combined.
Index Terms: speech recognition, system combination, word pos-
teriors.

1. Introduction
System Combination is a promising way to obtain a significant
reduction in word error rate (WER). For example, the five English
systems participating in the Second TC-STAR ASR Evaluation
campaign 2006 gave word error rates ranging from 8.3% to 11.0%
WER. System combination of these systems via ROVER lead to a
WER of 6.9%.

Usually, system combination gives largest improvements, if
the individual systems to be combined lead to similar performance
and are complementary w.r.t. the errors they produce. Neverthe-
less, parallel development of complementary systems with com-
parable performance can be time consuming. On the other hand,
the development cycle of a state-of-the-art ASR system involves
subsequent creation of suboptimal systems due to techniques like
adaption and discriminative training. Therefore, here we investi-
gate the use of such suboptimal systems by applying system com-
bination methods. Due to the corresponding performance range of
the systems to be combined, we also investigate the use of system
priors estimated on a development set.

The aim of system combination for ASR is to minimize the ex-
pected WER given multiple systems outputs. Bayes decision rule
with a Levenshtein cost function L provides the general framework
for a minimum WER decoder:
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word sequence vM
1 given the acoustic observation sequence

The exponential size of the search and summation space
ids a direct application of this decision rule for LVCSR sys-
s [1]. Word graphs are an efficient way to narrow the search
e, but they still represent a huge number of hypotheses and
rect application of Eq. (1) still is prohibitive. The confusion
ork (CN) and minimum Time Frame Error (fWER) decoder

two approaches using different approximations to realize min-
m WER decoding on word graphs [2, 3]. For both approaches,
tive improvements of up to 5% in WER are reported.
Confusion network combination (CNC) is a system combina-
approach based on the alignment of CNs [4]. Therefore, CNC

ased on the same approximations to the word graph structure
Ns, i.e. word boundary information is relaxated during CN

struction and then discarded. In contrast to this, the presented
imum fWER combination scheme does not affect the word
h structure. This is achieved by replacing the Levenshtein cost
tion with a frame-wise word error cost function. The resulting
rithm is of low computational complexity.
ROVER is employed to obtain a baseline for the system com-
tion experiments. We use an extended voting rule which in-
orates system weights.
The rest of the paper is structured as follows. In the next two
ions we give a short review of ROVER and CNC. For ROVER
introduce the used weighting scheme, which is also applied
he other combination schemes discussed. In Sec. 4 we review
imum fWER decoding and extend it for system combination.
erimental results including a comparison of the system com-
tion methods are presented in Sec. 5. The final Sec. 6 gives

clusions and an outlook.

2. ROVER
ER [5] is a two step procedure comprised of alignment and

ng. The alignment depends on the system permutation. Ex-
stive experiments have shown that best results are obtained
n systems are ordered by increasing WER.
We modified the voting function by weighting the confidence
es provided by each system with additional system dependent
ghts λ1, . . . , λL:

ore(w, i) =
1

L

LX
l=1

[α δ(w, wl,i) + (1 − α) λl confl(w, i)] ,

(2)
δ is the Kronecker-δ, i denotes the position in the alignment
L is the number of systems. Majority vote and averaged
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confidence score are smoothly interpolated via α. Basic ROVER is
derived by setting λ1 = · · · = λL = 1. Besides the linear weights
we tested system dependent exponents, but the linear weights gave
better results for all corpora.

3. CNC
A CN is a directed graph with the following property: all outgoing
arcs of a given node have the same target node. For this structure,
Eq. (1) has a simple solution. In [2] an iterative algorithm is
presented that transforms a word graph into a CN by successive
arc alignments.

A generalized ROVER algorithm is used to align the CNs
derived from several systems [4]. The result is a new CN. The
word posterior probabilities for the ith confusion set in the super-
CN can easily be calculated as the joint probability of the system
specific posteriors:

p(w|i, xT
1 ) =

LX
l=1

p(Sl|i, x
T
1 )p(w|Sl, i, x

T
1 ) (3)

4. Frame Based System Combination
4.1. Minimum fWER Decoding

In Sec. 3 we pointed out how Eq. (1) can be simplified by changing
the structure of a word graph. Alternatively, an approach to instead
simplify the decision rule Eq. (1) is introduced in [3]. The idea
is to replace the Levenshtein distance L by a computationally
cheap cost function C: the time frame word error (fWER). The
fWER takes the word boundary times of a word into account and
calculates the cost based on the time frames covered:

C([w; t]N1 , [v; τ ]M1 ) =

NX
n=1

Ptn

t̂=tn−1+1
1 − δ(wn, vt̂)

1 + α(tn − tn−1 − 1)
(4)

[w; t]N1 denotes a sequence of words together with their ending
times, where t0 = 0 and tN = T , and vt̂ is the word in [v; τ ]M1
which intersects time frame t̂.

The denominator in Eq. (4) allows a smooth normalization of
the time frame errors. α = 1 gives time frame-wise normalization,
and α = 0 gives word-wise normalization of the error. For all
tested corpora the best results were obtained with α = 0.05.

In contrast to the Levenshtein distance, the advantage of the
fWER is that no sentence alignment is required. That makes the
fWER computationally cheap. In [3], a strong relation between
fWER and WER is shown empirically, which justifies the usage of
the fWER as an approximation of the WER.

Inserting Eq. (4) into Eq. (1) gives the minimum fWER deci-
sion rule:

{[w; t]N1 }opt = argmin
[w;t]N

1

NX
n=1

Ptn

t̂=tn−1+1

ˆ
1 − p(wn|t̂, x

T
1 )

˜

1 + α(tn − tn−1 − 1)

(5)
The term p(·|t, xT

1 ) is the frame-wise word posterior distribution.
The frame-wise word posteriors are calculated by a modified

forward/backward (FB) algorithm. Figure 1 illustrates the algo-
rithm. The rectangles in b) represent the word-wise accumulated
FB-scores of the arcs in a). For time frame t the posterior proba-
bility p(“have′′|t, xT

1 ) is the normalized sum of the FB-scores of
all arcs labeled with “have” and intersecting time frame t.
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re 1: Illustration of the calculation of the posterior distribu-
p(·|t, xT

1 ) from a word graph. The rectangles in b) represent
word-wise accumulated fwd./bwd.-scores of the arcs in a).

The evidence space is the set of all hypotheses considered in
decoding step. In the original paper, the set of hypotheses in the
d graph is used as evidence space. The graphs produced by our
rbi decoder are word conditioned. We can enlarge the evidence
e by transforming the word graphs into time-conditioned ones.

s resulted in a little but insignificant decrease in WER for all
ora.
There is a substantial difference between CN and fWER de-
ing. In CN decoding word boundaries are only used to align
ds. Once the CN is built, all time information is lost and the
ulation of the word posterior probabilities depends only on the
lting word positions. Time boundaries for the output have to
roduced in a post-processing step.
The fWER decoding approach preserves the word graph struc-
and thus the output is produced with correct word boundary
s.

Minimum fWER over Multiple Word Graphs

minimum fWER decoding approach for a single word graph
easily be extended to minimize the WER over multiple word
hs. According to Eq. (5) we have to change the calculation of

word posteriors and to redefine the evidence space.
From each word graph Gl of each systems Sl we de-

a sequence of frame-wise word posterior distributions
Sl, 1, xT

1 ), . . . , p(·|Sl, T, xT
1 ). In our experiments we use the

t probability over the system dependent posteriors to calculate
ultiple system frame-wise word posterior probability:

p(w|t, xT
1 ) =

LX
l=1

p(Sl|t, x
T
1 )p(w|Sl, t, x

T
1 ) (6)

system priors p(Sl|t, x
T
1 ) are approximated by a system de-

dent constant λl. We also tried a log-linear combination model,
the joint probability model turned out to be superior for all

ed corpora.
The new evidence space is simply the time conditioned word
h derived from the union of all word graphs G1, . . . , GL.
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Figure 2: Illustration of the word graph pre-processing step. Al-
ternative arcs labeled with non-speech events {·} are removed.

It should be noted that the frame based combination works,
even if the individual systems use different segmentations to pro-
duce their word graphs: the calculation of the frame-wise word
posterior distributions is independent of the segmentation, since it
is applied on a frame-by-frame basis. Again, the evidence space is
obtained by the union of all systems word graphs. The correspond-
ing search in this case still is efficient, since the corresponding de-
cision rule does not use context (the acoustic and language model
context is considered on the level of word posterior computation
already).

4.3. Word graph pre-processing

The RWTH LVCSR system uses different acoustic models to rep-
resent non-speech events like silence, hesitation, articulatory and
non-articulatory noise. These models tend to be very similar. As
a consequence, all non-speech models are hypothesized in par-
allel having similar scores, and if they survive the pruning steps
they occur as “non-speech event clouds” in the word graphs as
illustrated in Figure 2 a). These clouds bias the word posteriors
calculated from the word graph. The posteriors of words and non-
speech events lying on a path through a “non-speech cloud” are
over-estimated.

The basic idea to get rid of the bias is to discard alternative
non-speech events. Figure 2 illustrates the function of the filter.
In 2 a) two arcs labeled with “have” start from the leftmost node.
Both arcs are followed by non-speech events. From all the alter-
native paths starting with one of the “have”-arcs and ending in the
rightmost node, we only want to keep a single one. For all the
nodes in the “non-speech event cloud”, all incoming arcs but the
best scoring one are discarded. The result is the graph 2 b). The
dotted arc is removed by a subsequent trimming step.

5. Experiments
5.1. Corpora

We present results on two different corpora: the EPPS 2005 Span-
ish corpus and the EPPS 2006 English corpus. Both corpora
contain parliamentary speeches from the European Parliament and
were collected within the TC-STAR project. All audio files are
monaural with 16-bit resolution at a sampling rate of 16kHz. The
training material contained 30h for the EPPS 2005 Spanish task
and 100h for the EPPS 2006 English task.
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le 1: Baseline for the EPPS Spanish Evaluation 2005 task. The
eline system is a standard MFCC system.

WER[%] CN WER[%] fWER [%]
dev. eval. dev. eval. dev. eval.

3-gram LM
w/o LDA 13.6 14.9 13.6 14.8 13.4 14.9

12.2 13.1 12.2 13.0 12.1 13.0
with VTN 11.8 12.6 11.9 12.5 11.7 12.5

4-gram LM
w/o LDA 13.2 14.6 13.2 14.5 13.2 14.6

11.9 12.8 11.9 12.8 11.9 12.9
with VTN 11.7 12.1 11.7 12.1 11.5 12.2

LIMSI 11.2 12.3 11.2 12.2 - -

le 2: Baseline for the EPPS English Evaluation 2006 task. The
eline system is a standard MFCC system with an additional
edness feature and VTN.

WER[%] CN WER[%] fWER [%]
dev. eval. dev. eval. dev. eval.

(C)MLLR 14.1 11.8 14.1 11.8 13.9 11.8
MMI 13.7 11.7 13.7 11.7 13.5 11.5
SAT 13.3 10.8 13.4 10.7 13.1 10.8

ew lex/LM 12.9 10.3 13.0 10.4 12.7 10.3

Systems and Experimental Setup

the Spanish task of the first TC-STAR Evaluation campaign
5 we trained three acoustic models. A baseline model similar
he one described in [6], a model using vocal tract length nor-
ization (VTN) and a model without linear discriminant anal-
(LDA). Two different language models were used, a trigram
a fourgram. In addition, word graphs were kindly provided
.-L. Gauvain (LIMSI) for this corpus. Initial experiments in-
ted that best performance can be expected from a combination
hree systems including the best systems, i.e. VTN+fourgram
LIMSI, and one system using the trigram LM.
For the EPPS 2006 Evaluation English task we did system
bination on the set of suboptimal acoustic models that evolved
ng the training of the final evaluation system [6].
All experiments were done on word graphs. The word graphs
e pruned to a density of approximately forty. The graph error
s (GER) for the Spanish systems are around 5%. For the
lish development set the GER is approx. 3% and ∼1% for
evaluation set.
For CN and CNC decoding the SRILM toolkit was used and
ROVER experiments the ROVER tool provided by NIST. The
R experiments were done with our own software based on the

TH FSA toolkit [7]. The confidence scores for the ROVER
eriments were calculated as described in [8]. System priors
the ROVER parameters were optimized on the development

. Oracle error rates were calculated on the best hypothesis of
system using the ROVER tool.

Results

ables 1 and 2 the results of the single systems to be combined
summarized and compared to CN and minimum fWER decod-

Possibly due to the low initial word error rates, the EPPS
6 English development set was the only condition for which



Table 3: Results on the EPPS Spanish Evaluation 2005 task for the
combination of RWTH internal systems.

combination systems WER[%]
method dev. eval.

best single system 11.7 12.1

Oracle lm4+VTN, lm3, lm4 w/o LDA 8.1 8.7

ROVER lm4+VTN, lm3, lm4 w/o LDA 11.3 12.2
+ conf. scores 11.2 12.0
+ weighted conf. scores 11.2 11.9

CNC lm4+VTN, lm3, lm4 w/o LDA 11.3 12.2
+ weights 11.3 12.1

Frame lm4+VTN, lm3, lm4 w/o LDA 11.2 12.2
Based + weights 11.1 12.1

Table 4: Results on the EPPS Spanish Evaluation 2005 task for the
combination of RWTH internal systems and the LIMSI system.

combination systems WER[%]
method dev. eval.

best single system 11.2 12.1

Oracle Limsi, lm4+VTN, lm3 6.6 7.3

ROVER Limsi, lm4+VTN, lm3 10.4 11.4
+ conf. scores 10.3 11.2
+ weighted conf. scores 10.0 10.8

CNC Limsi, lm4+VTN, lm3 10.6 11.3
+ weights 10.3 11.2

we observed (small) decreases in WER. In all other cases of fWER
and CN no improvements were observed.

Table 3 shows the result for the internal system combination
experiments on EPPS 2005 Spanish. Here, we used only RWTH
systems and did not include the word graphs from LIMSI. Al-
though the oracle WER indicates a potential for system combi-
nation, the final gain is small. The inclusion of the LIMSI lattices
lowered the oracle WER by 1.4%. Weighted ROVER was able to
decrease the WER by almost the same amount, cf. Table 4. Also
CNC benefited from the LIMSI lattices, but less than ROVER.

Table 5 summarizes the results on the EPPS 2006 English
corpus. For the development set, system combination seemed to
capitalize on the suboptimal systems. But on the evaluation set
none of the combination methods considered achieved a significant
improvement.

6. Conclusions And Outlook
In this paper, a new system combination method based on min-
imum fWER decoding was presented. The new approach pre-
serves the structure of the word graphs and the corresponding word
boundaries, and can even be applied on word graphs of different
segmentation.

For the first experiments presented we could not observe a
significant difference in the performance of the new frame based
system combination approach, CNC, and ROVER. However, the
comparison of all combination approaches was done for internal
system combination only, for which none of the methods gives
significant improvements on the corpora considered.

Future work will therefore concentrate on combination ex-
periments on word graphs both from different sites and based on
fundamentally different models of comparable performance.
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le 5: Results on the EPPS English Evaluation 2006 task for the
bination of RWTH internal systems.
combination systems WER[%]
method dev. eval.

best single system 12.9 10.3

Oracle all systems 10.8 8.6

ROVER all systems 13.0 10.5
+ conf. scores 12.6 10.5
+ weighted conf. scores 12.5 10.4

CNC all systems 13.1 10.6
+ weights 12.9 10.2

Frame all systems 12.8 10.7
Based + weights 12.5 10.3
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F. Wessel, R. Schlüter, and H. Ney, “Explicit word error
minimization using word hypothesis posterior probabilities,”
in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, Salt Lake City, May 2001, vol. 1, pp. 33 – 36.

G. Evermann and P. Woodland, “Posterior probability decod-
ing, confidence estimation and system combination,” in NIST
Speech Transcription Workshop, College Park, MD, 2000.

J.G. Fiscus, “A post-processing system to yield reduced
word error rates: Recognizer output voting error reduction
(rover),” in Proc. IEEE Automatic Speech Recognition and
Understanding Workshop, Santa Barbara, CA, USA, Decem-
ber 1997, pp. 347 – 354.

Ch. Gollan, G. Heigold, B. Hoffmeister, J. Lööf, Ch. Plahl,
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