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Abstract

In the paper, we present a comparative study of several methods
used nowadays in the field of feature and information extraction.
We compared several Independent Component Analysis (ICA) al-
gorithms together with the commonly used Principal Component
Analysis (PCA) algorithm in two real-world tasks. The first task
was a Voice Activity Detection (VAD), the second is Speaker Ver-
ification and Recognition (SVR). The VAD system as well as the
SVR system benefited from the ICA decompositions. Moreover, a
brief comparison of the information extraction ability is described.
Index Terms: independent components, principal components,
ICA, linear transforms, speaker verification and recognition, voice
activity detection.

1. Introduction
In a lot of today’s applications, a GMM models with diagonal co-
variance matrices are used. To ensure good performance, various
methods of decorrelation are used. In this paper, we try to show,
that there are better choices than ordinary PCA or DCT (discrete
cosinus transform).

Suppose we have a set x of k realizations of m-dimensional
random variable X, x = {�x1, . . . , �xk}. Our task is to induce a lin-
ear transformation of the random variable X into n-dimensional
random variable Y given the (training) set x. Every linear trans-
formation consisting of rotation, scaling and reflection of the input
data can be described by a n × m matrix W:

�y = W�x (1)

so without loss of generality we will talk about the linear transfor-
mation W. The resulting random variable Y is demanded to have
some special properties. The properties can be imposed by our a-
priori knowledge on the given problem task and, additionally, by
the requirements of mathematical methods supposed to operate on
the realizations of the random variable.

The following two construction methods of the matrix W con-
struction are based on the assumption that each element of vec-
tor �x is some linear combination of the elements of the “original”
(source) random variable �y, i.e.:

�x = A�y (2)

Therefore our task is to determine the unmixing matrix W such as

�̂y = W�x (3)

where ideally �̂y = �y or it is a ”good” approximation in general.
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2. Principal Component Analysis
Principal Component Analysis is the classic technique for sta-

cal data analysis and information extraction. Given the set x

ant to find a matrix W, such as the resulting random variable
retain as much information as possible while the dimension
ndom variable is reduced. The redundancy is measured by the
elations between elements of �x.
The PCA does not impose any limitation on probability den-
function, only first and second-order statistics must be possible
stimate from the training data (in case where we do not know
e statistics a-priori). Suppose we have the correlation matrix

C = E{XX
T}

the PCA finds such a matrix W for which the off-diagonal
s-correlations are minimized.
The PCA algorithm consists of several steps. In the first step,
raining data are centered (the mean of data is subtracted). Sec-
y, such a matrix is found which rotates the coordinate system
ch a way, which ensures that the correlation between elements
is the lowest possible one. The contrast function can be writ-
n the form

J
PCA = trace{C} −

mX
j=1

w
T
j Cwj (4)

re wj is the j-th row of the matrix W. It is a well-known
that the solution of the PCA problem is given by terms of
nvectors and eigenvalues. In the last step, a transformation
ix W is created from eigenvectors whose eigenvalues are the
est ones. For more detail, see [11].

3. Independent Component Analysis
the name suggests, Independent Component Analysis (ICA)
ods assume statistical independence among the elements of �y.
functions evaluating degree of independence take higher sta-

cal moments into account, not only the second moments, as
does. There exists a wide range of criterion functions – com-
measures are Entropy, Kullback-Leibler Divergence and Ne-

ropy and their approximations.

FastICA algorithm

ICA is based on a fixed-point iterative scheme for finding the
imum of the contrast function. The contrast function is based
pproximation of negentropy. Negentropy is defined in the fol-
ng way

J(y) = H(ν) − H(y) (5)
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where the ν is a random variable with (multivariate) normal dis-
tribution with the same mean and variance as the variable y has.
Usually, the variance is constrained to unity. The H(ϑ) is entropy
of a random variable ϑ. It can be proved, that negentropy is a
statistically optimal measure of non-gaussianity.

The evaluation of the negentropy is a very difficult task in gen-
eral, since the estimation of probability density function must be
carried out. Therefore, an approximation of the contrast function
is used. Moreover, only scalar case is taken into account – us-
ing these approximations we obtain an algorithm for extracting of
only one component. However, this is not a significant problem
(see later). The approximation has a form

J(y) = [E{G(y} − E{G(ν)}]2 (6)

where G(·) is practically any non-quadratic function. By virtue of
choosing function G(·) one can obtain an approximative negen-
tropy with different properties.

By choosing the G(·) function as

G(y) = y
4 (7)

the kurtosis-based approximation is obtained, i.e. the non-
gaussianity is measured by means of kurtosis. However, this ap-
proximation is very sensitive to outliers. There exist different and
more robust approximations

G(y) =
1

a
log cosh ay (8)

or

G(y) = − exp

„
−

y2

2

«
(9)

where 1 ≤ a ≤ 2; often the a is chosen so that a = 1.
As already mentioned, by maximizing the scalar value of

the contrast function J(y) we can obtain only one (the most non-
gaussian) component. However, there exist two different schemes
for obtaining m components using the fact, that the weight vec-
tors �wi (rows of matrix W) should be orthogonal. In general, we
apply the algorithm several times and use some orthogonalization
process to ensure the orthogonality of extracted components. The
deflationary scheme extracts the m most independent components
in a sequential way. The symmetric scheme extract some m inde-
pendent components without preferring one to another. For more
detail on FastICA see [1], for the extraction schemes see [2].

3.2. The Cumulant Based ICA (CuBICA)

This method is based on a description of the data by cumulants.
The cumulants-based description is more detailed than the descrip-
tion given by the first four statistical moments (mean, variance,
skewness and kurtosis). In fact, cumulants of a given order form
a tensor and the diagonal elements of this tensor are moments of
the given order. We will assume the order of three and four –
i.e. skewness and kurtosis based cumulants. The off-diagonal el-
ements (cross-cumulants) characterize the statistical dependencies
between components. If and only if all components are statistically
independent, the cross-cumulants will be zero.

Thus, the ICA task can be reformulated by the means of find-
ing some linear transformation matrix diagonalizing the cumulant
tensors up to the given order. However in general there does not
exists such a diagonal matrix, which would diagonalize the third-
order and the fourth-order cumulants simultaneously, so some
choice of a different optimization criterion must be made.
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The CuBICA algorithm is based on the following criterion

J(y) =
1

3!

X
αβγ �=ααα

“
C

(y)
αβγ

”2

+
1

4!

X
αβγδ �=αααα

“
C

(y)
αβγδ

”2
(10)

re the factors 1
3!

and 1
4!

arise from an expansion of the
back-Leibler divergence in y i.e. in Wx. This criterion can
ignificantly simplified using the fact that the square sum over
lements of a cumulant tensor is preserved under any orthogo-
transformation W and due to the multilinearity of the cumu-

[4].
The optimization process is based on Givens rotation (rotation
nd the origin within the plane of two selected components).
s, the optimization process is transformed to sequential finding
otation angle which maximizes the independence between two
ponents for all possible component pairs. The final contrast
tion for optimizing the independence of two components has
orm

(Φ, y) = A0 + A4 cos(4Φ + Φ4) + A8 cos(8Φ + Φ8) (11)

re the constants A0, A4, Φ4 and Φ8 depend only on the cu-
ants of y before rotation. Equations of these constants can be
d in [3], [4]. In the same paper a modification which does not
into account the third moment is described. The related con-
function can be obtained by setting the third-order cumulants
ro in equations for A0, A4, Φ4 and Φ8.

4. Speech Data and Experiment Setup
Speech Corpora Used in Our Experiments

first experiment was a speaker verification task. We used
ecial setup of the well-known TIMIT corpus [8]. The TIMIT
us contains 16 kHz 16 bit sampled recordings from 630 speak-
The recordings are divided into the training and testing parts.
training part contains five sentences for every speaker. The test
consists of three sentences. Each training session was verified
target speaker session and 30 impostor sessions which were

omly chosen. It means 630 + 630 · 30 = 19530 trials were
ormed. The verification system performance was measured by
qual error rate (EER).
The second experiment was a simple VAD (voice activity de-
on). In this experiment we used the Czech high-quality speech
us [5]. The Czech high-quality speech corpus is a read-speech
base consisting of the speech of 100 speakers. Each speaker
s 40 sentences identical for all speakers. The database of text
pts from which the sentences were selected was obtained in

lectronic form from the web pages of Czech newspaper pub-
rs [6]. Special consideration was given to the selection of sen-
es to obtain a representative distribution of frequent triphone
ences (reflecting their relative occurrences in natural speech).
ch corpus was digitized at 44.1 kHz with the resolution of
it per sample. We used MFCC the parametrization method.
dimension of feature vector was 36.

Speaker Verification System Description

used SVR system was a text-independent system based on op-
zed MFCC features and diagonal gaussian mixtures models.



INTERSPEECH 2006 - ICSLP
The MFCC features were augmented by their delta coefficients.
The energy (zeroth) coefficient is discarded so the final dimension
of the feature vector was 40. Time sequences of cepstral coeffi-
cients were smoothed by a Blackman window yielding better noise
robustness. Only the speech segments were chosen by robust voice
activity detector. The system is described in more detail in [9].

The acoustic model was a Gaussian mixture model (GMM)
and it was trained by combination of the distance based (DB) and
the expectation-maximization (EM) algorithm. The DB algorithm
has been introduced in [10] for robust GMM training with a little
amount of data. We used this clustering algorithm for creating tar-
get number of initial gaussian mixtures. This step is very fast in
comparison to the classical EM algorithm with iterative addition
of the mixtures. Subsequently the EM algorithm was employed
on the initial DB-GMM model to estimate more accurate parame-
ters of the final GMM. For the speakers models (λSp), 32 mixtures
were used. The universal background model (λUBM ) score nor-
malization technique was applied in the verification experiment.
The background model was trained in the same way as the speaker
models from the data marked as non-speech by the VAD system.
The number of mixtures for the background model was 128.

Each trial in the experiment was evaluated according to the
expression:

L(Ŷ) = log p(Ŷ|λSp) − log p(Ŷ|λUBM ) (12)

where Ŷ are the preprocessed testing data, λSp and λUBM are
GMM models. L(Ŷ) is the resulted score vector. The final ver-
ification probability R ∈< 0, 1 > was computed as R =

Np

Ntot
,

where Np is the number of the data vectors which score is greater
then threshold (in our case zero) and Ntot is the total number of
the tested data vectors. The Detection Error Tradeoff (DET) curve
and the EER could be computed after processing all trials in the
experiment phase.

4.3. Voice Activity Detection System Description

The VAD system was based on a simple HMM-based acoustic
model. The acoustic model comprised of only two models: the
model of silence and the model of speech. Each model permitted
generation of exactly one segment of acoustic signal. The output
probability density function assigned to each state was approxi-
mated by Gaussian Mixture Model (GMM) with diagonal covari-
ance matrices. In our experiment we gradually increased the num-
ber of mixtures by one and saved and tested the particular models.

We used an n-gram based pseudo-language model. The model
was based on language having only two words: “silence” and
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ech”. In our experiments we used the zerogram based pseudo-
uage model and the bigram based pseudo-language model.
bigram model is more complicated and uses four transition
abilities. All the transition probabilities were computed from
raining part of the data. The system is described in [7]

5. Experimental Results
oth of the two tests we used the original matlab rou-

s created by the authors of the methods (for FastICA
age, see http://www.cis.hut.fi/projects/ica/
tica/, for CuBICA see http://itb.biologie.
berlin.de/˜blaschke/code.html).

Voice Activity Detection Task

e first experiment, we tested the benefits of ICA transforma-
s and the pseudo-language model influence on HMM classifier
ormance in VAD task. Firstly, the type of G function was cho-
We chose G(u) = 1

4
u4. Using this function, we obtained a

osis-based approximation of negentropy.
The complete training data from the corpus described above
e used to estimate the unmixing matrix W. The resulting ma-
was used for preprocessing both the training as well as the
ng data in the following way: firstly, for every speech record
take all it’s observation vectors and form an m × T matrix

here m is the dimension of the observation vector (36 in our
) and T is the length of a given record (the number of observed
ors).
The decomposition was performed in the following way: sup-
that xt is the t-th column of the matrix X, and μ is the mean

or of the m observation vector X, then the estimated source
ponents are

∀t ∈ {0, 1, . . . , T} : ŷt = Wxt (13)

We briefly tested other mentioned ICA packages, but their per-
ance was very similar to the above mentioned. For the HMM
d silence detector the classifier trained on ICA transformed
outperformed the HMM classifier trained on “plain” data.

eover, the pseudo-language modeling was also found to be
ficial. The complete results of this experiment are displayed

.

Speaker Verification and Recognition

each speaker in the training set one unmixing matrix W was
ulated and a GMM model was trained on the independent com-
ents. The same process was performed for the background
.

DIM base PCA CuBICA4 CuBICA34 FastICA(gauss) FastICA(kurt) FastICA(tanh)

40 0.63 % 0.60 % 0.38 % 0.39 % 0.41 % 0.48 % 0.45 %

37 – 1.08 % – – 0.45 % 0.72 % 0.50 %

35 – 1.31 % – – 0.32 % 0.81 % 0.61 %

33 – 1.44 % – – 0.56 % 1.17 % 0.48 %

30 – 2.22 % – – 0.77 % 1.75 % 1.15 %

Table 1: Comparison of EER in the speaker verification task. CuBICA4 is CuBICA diagonalizing only the fourth moment, CuBICA34
diagonalizes the third as well as the fourth moment. FastICA(gauss) uses nonlinearity G(·) from eq. 9, FastICA(kurt) uses nonlinearity G(·)
from eq. 7, FastICA(tanh) uses nonlinearity G(·) from eq. 8
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Figure 1: Comparison of the influence of ICA on the perfor-
mance (in %) of HMM-based VAD system

The testing phase is straightforward: for each speaker we un-
mix the input data (feature vectors x) using the unmixing matrix
of the given speaker. Then the log-likelihood log p(Ŷ|λSp) is per-
formed.

Since the unmixing matrix is different for every speaker, the
calculated log p′(Ŷ|λSp) are not directly comparable. Therefore
the probability log p(Ŷ|λSp) of every speaker and of the back-
ground model is normalized by the corresponding unmixing ma-
trix W to obtain the log-likelihood used in the SVR engine:

log p(Ŷ|λSp) = log p
′(Ŷ|λSp) + 2 log

h
det(WW

T)
i

(14)

where the 2 log
ˆ
det(WWT)

˜
is a correction factor transforming

the obtained log-likelihood into the original data space, the p′(·) is
the probability in the given space of independent components and
the p(·) is the probability used in the SVR engine.

Moreover, if the components extraction method allows to
choose only the n most “important” components, then we per-
formed an additional measuring the the capability of relevant in-
formation extraction. Basically, we tested the FastICA algorithm
using the deflationary reduction scheme and the classical PCA.
However, even in this case, the correction factor always contained
the full unmixing matrix corresponding to the given speaker.

The results can be found in Table1. The result show that
all systems exploiting ICA algorithms outperformed the baseline
SVR system and even the SVR system using the PCA. Talking
only about the ICA algorithms, the CuBICA performs better than
the “competing” FastICA algorithm. The CubICA4 yields slightly
better results, but the difference is statistically insignificant. In
the FastICA family, the algorithm using the approximation 9 per-
formed better than the others.

The results of dimensionality reduction tests imply that the
FastICA algorithms has good ability to extract relevant informa-
tion. In some cases, we were able to reduce the number of dimen-
sions from 40 to 30 while keeping the performance comparable to
the baseline (40 dimensions).
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6. Conclusion
e paper we demonstrated the possibility to improve the per-
ance of existing speech methods by employing ICA in the
rocessing stage. To take this advantage only a very little work
eded and the computational demands are essentially the same
the case of PCA. Furthermore, also experiments with extrac-
of informative features (components) were performed. The

results imply that the ICA algorithms can perform better than
imple PCA. However, due to the diversity of the tested meth-
some further tests should be always performed to choose the

t suitable ICA algorithm.
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