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Abstract

We present a phonetic classification approach based on Bayesian
networks using time-scale features which are extracted from the
discrete Wavelet transform. We apply Bayesian networks using
discriminative and generative parameter and/or structure learning
for classifying the speech frames into silence, voiced, unvoiced,
mixed sounds, and two more categories, voiced closure and release
of plosives. Gender dependent/independent experiments have been
performed on the TIMIT database. The experiments show that
(i) our time-scale features mostly outperform standard MFCC fea-
tures, (ii) discriminative learning of Bayesian networks is superior
to the generative approach.
Index Terms: phonetic classification, time-scale features, wavelet
transform, Bayesian networks, discriminative learning.

1. Introduction
One of the most critical tasks in speech processing and speech ap-
plications is automatic phonetic classification. In speech recog-
nition, a phonetic classifier is needed to enhance the endpoint
detection performance in order to increase the word recognition
rate. The accurate discrimination between phonetic classes will
improve the output quality of data-driven speech synthesizers by
adjusting non-uniform scaling factors of each phonetic class based
on time-scaling modification algorithms. Voice activity detection
which is employed by most speech applications is a direct appli-
cation of phonetic classification.

The speech classification is done by training a model to learn
differences of statistical distributions of the acoustic features be-
tween different phonetic classes [1]. The acoustic features can be
derived in the time domain, e.g., zero crossing rate, energy level,
and autocorrelation coefficients [2]. Frequently used features in
the frequency domain are cepstrum pitch detection [3] and mel
frequency cepstral coefficients (MFCC) [4]. These features are
based on the short-time Fourier transform (STFT) which shows a
shortcoming of the rigid time-frequency (TF) plane. The extracted
features from the discrete Wavelet transform (DWT) which over-
come the shortcomings of the STFT by a flexible resolution of the
TF plane can improve the classification rate significantly [5].

Different classification approaches, e.g., Gaussian mixture
model and multi-layer perceptron have been studied in [6] for pho-
netic classification. To the best of our knowledge, discriminatively
trained Bayesian networks, which achieves promising results in
other classification domains [7], have not been used for phonetic
classification so far. Generative classifiers learn a model of the
joint probability of the features and the corresponding class label
and perform predictions (classification) by using Bayes rule. The
usual approach for learning a generative model is maximum like-
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od (ML) estimation. Discriminative classifiers directly model
class posterior probability. Maximizing the conditional like-
od (CL) of the class given the attributes results in optimizing
bility to correctly predict the class. Unfortunately, the CL for

esian networks is not decomposable, i.e., there is no closed-
solution. Recently, some approaches have been suggested to
the structure and/or parameters discriminatively by maximiz-

the class conditional likelihood (CL) or the classification rate
). An excellent overview is provided in [7].

In this paper, we apply both discriminative parameter learn-
by optimizing the CL and generative parameter training (ML

ation) on both discriminatively and generatively structured
esian networks. The naive Bayes (NB) and the tree augmented
e Bayes (TAN) classifiers are used. Time-scale features based
he DWT are employed to improve the phonetic classification.
features are derived by applying a wavelet decomposition at
th scale on every windowed speech frame of 16ms length and
overlap. Based on these features, the speech frames are clas-

d into four classes: voiced (V), unvoiced (U), silence (S), and
ed (M) sounds, or into six classes which include two additional
ses of voiced closure (VC) and release of plosives (R).

The paper is organized as follows: Section 2 introduces
esian network classifiers, the NB and TAN structures, and gen-
ve/discriminative structure learning. Feature extraction based
WT is presented in Section 3. Experiments on the TIMIT

base and discussions are presented in Section 4. Section 5
ludes and gives perspectives for future research.

2. Bayesian network classifier

ayesian network [8] B = 〈G, Θ〉 is a directed acyclic graph
(Z,E) consisting of a set of nodes Z and a set of directed

s E =
˘
EZi,Zj

, EZi,Zk
, . . .

¯
connecting the nodes where

,Zj
is an edge from Zi to Zj . This graph represents factor-

on properties of the distribution of a set of random variables
{C, X1, . . . , XN} = {Z1, . . . , ZN+1}, where each variable
has values denoted by lower case letters {c, x1, . . . , xN}.

use boldface capital letters, e.g. Z, to denote a set of ran-
variables and correspondingly lower case boldface letters de-
a set of instantiations (values). The random variable C ∈
. . , |C|} represents the classes, |C| is the cardinality of C,

N = {X1, . . . , XN} denote the set of random variables of
N attributes of the classifier. Each graph node represents
ndom variable, while the lack of edges specifies indepen-
ies. Specifically, in a Bayesian network each node is inde-
ent of its non-descendants given its parents. These condi-

al independence relationships reduce both number of param-
and required computation. Symbol Θ represents the set of
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parameters which quantify the network. Each node Zj is rep-
resented as a local conditional probability distribution given its
parents ZΠj

. The joint probability distribution of the network
is determined by the local conditional probability distributions as
PΘ (Z) =

QN+1
j=1 PΘ

`
Zj |ZΠj

´
.

Generative parameter learning, i.e. ML estimation is dis-
cussed in [8]. Discriminative parameter learning by optimizing
the CL is presented in [9].

2.1. NB and TAN structures

The NB network assumes that all the attributes are conditionally
independent given the class label. As reported in the literature
[10], the performance of the NB classifier is surprisingly good even
if the conditional independence assumption between attributes is
unrealistic in most of the data. The structure of the naive Bayes
classifier is illustrated in Figure 1a.

Class

Attributes

X1 X2
X3 XN

C

Class

Attributes

X1 X2
X3 XN

C

(a)

(b)

Figure 1: Bayesian Network: NB (a), TAN (b).
In order to correct some of the limitations of the NB classifier,

Friedman et al. [10] introduced the TAN classifier. A TAN is based
on structural augmentations of the NB network, where additional
edges are added between attributes in order to relax some of the
most flagrant conditional independence properties of NB. Each at-
tribute may have at most one other attribute as an additional parent
which means that the tree-width of the attribute induced sub-graph
is unity (1-tree). Hence, the maximum number of edges added to
relax the independence assumption between the attributes is N−1.
An example of a TAN network is shown in Figure 1b. A TAN net-
work is typically initialized as a NB network. Additional edges
between attributes are determined through structure learning.

2.2. Generative structure learning of TAN:

The conditional mutual information (CMI) I (Xi; Xj |C) between
the attributes given the class variable is used as score. This mea-
sures the information between Xi and Xj in the context of C.
Friedman et al. [10] give an algorithm for constructing a TAN net-
work using this measure. In the following, we shortly review this
algorithm for constructing the classifier structure:

1. Compute the pairwise CMI I (Xi; Xj |C) ∀ 1 ≤ i ≤
N and i ≤ j ≤ N .

2. Build a complete undirected 1-tree using the maximal
weighted spanning tree algorithm where each edge connect-
ing Xi and Xj is weighted by I (Xi; Xj |C).

3. Transform the complete undirected 1-tree to a directed tree.
Therefore, select a root variable and direct all edges away
from this root. Add to this tree the class node C and the
edges from C to all attributes X1, . . . , XN .

2.3.
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Discriminative structure learning of TAN:

use an order-based greedy search heuristic for efficient learn-
of the discriminative structure of a Bayesian network classi-
[7]. The best network consistent with a given variable order-
an be found in O

`
Nk
´

where k is the upper bound of parents
node. This fact is used in our order mutual information (OMI)
istic for learning discriminative structures [7]. Our procedure
looks for an ordering ≺ of the variables X1:N according to
onditional mutual information. If the graph is consistent with

ordering Xi ≺ Xj then the parent XΠj
∈ XΠj

is one of the
ables which appear before Xj in the ordering, where XΠj

is
et of possible parents for Xj . This constraint ensures that the
ork stays acyclic. More specifically, our algorithm forms an
red sequence of nodes X

1:N
≺ =

˘
X1

≺, X2
≺, . . . , XN

≺

¯
accord-

to

X
j
≺ ← arg max

X∈X1:N\X
1:j−1

≺

h
I
“
C; X|X1:j−1

≺

”i
(1)

re j ∈ {1, . . . , N}. The first node X1
≺ is the node with the

est information about C, i.e. it is most important for C.
In the second step of the algorithm, we connect X

j
≺ (∀j ∈

. . , N}) to the selected parent X∗
≺ ∈ XΠj

= X
1:j−1
≺ by

imizing the classification rate

X
∗
≺ ← arg max

X∈X
1:j−1

≺

CR (BS |S) , (2)

the current BS . (E ←
n
E ∪ E

X∗
≺

,X
j
≺

o
starting

ENaiveBayes). The classification rate CR (BS |S) =
R

r=1 δ (BS (xr
1:N) , cr). The expression δ (BS (xr

1:N ) , cr) =
the Bayesian network classifier BS (xr

1:N) trained with sam-
in S assigns the correct class label cr to the attribute values
. The training data consists of R samples S = {zr}R

r=1 =

,xr
1:N)}R

r=1.

3. Time-scale feature extraction
Wavelet-based multiresolution analysis

the DWT, various positions in the time-frequency plane are
yzed with different time-frequency resolutions which over-
es the limitation of STFT. The advantage of DWT in speech
essing is based on the relation between DWT and multireso-
n analysis (MRA) which allows the multiscale representation
eech signals in the time-scale domain. A discrete-time signal
can be represented as:

x[k] =
X
m

X
n

〈ψm,n, x〉 ψ̃m,n[k], (3)

re the discrete-time wavelet basis function ψm,n[k] is con-
ted from iterated filters, m, n, k ∈ Z. Based on the MRA,
ignal x[k] can be represented as the sum of an approximation
L details at L decomposition stages:

x[k] =
∞X

n=−∞

X
(L)[2n] · g

(L)
0 [k − 2L

n]+

LX
m=1

∞X
n=−∞

X
(m)[2n + 1] · g

(m)
1 [k − 2m

n],

(4)



where

X
(L)[2n] =

D
h

(L)
0 [2L

n − l], x[l]
E

,

X
(m)[2n + 1] =

D
h

(m)
1 [2m

n − l], x[l]
E

,
(5)

are the approximation coefficients and the detail coefficients, re-
spectively, at the output of the iterated filter bank with L stages.
g
(m)
0 [k] is an equivalent filter obtained through m stages of low-

pass synthesis filters g0[k], preceded by an upsampler by a factor
of 2. We call Wm,i(n) the sequence of all wavelet coefficients (i.e,
the X(L)[2n] and X(m)[2n + 1]) which are derived by WD at the
mth scale of the ith frame, n is the coefficient index, i ∈ Z.

3.2. Feature extraction

In this paper, we want to classify six types of phonetic classes
which have the same phonetic characteristics as silence, voiced
(vowels, semivowels, diphthongs and nasals), unvoiced (unvoiced
fricatives), mixed (voiced fricatives and glottal fricatives), and two
classes composing plosives: voiced closure and release.

Depending on the phonetic properties of the input speech
frames, the power of details increases from 1st scale to 4th scale
for voiced frames and vice versa for unvoiced frames. There is no
power change over various scales for mixed and silence frames.
Furthermore, we observe from statistical distribution of speech
sound that the power of voiced frames is mostly concentrated
in the low-frequency subbands in the range 0-4 kHz, and much
less in the high-frequency subbands. This is reversely for the un-
voiced frames, and relatively equal energy distribution occurs for
the mixed sounds. The voiced closure of voiced plosives show a
periodic structure and slightly high energy of approximation part
(at 4th scale). Some voiced consonants which are considered
as mixed class have low power as voiced closure but has higher
standard deviation at the 1st detail part (high-frequency subband).
These property can be used as specific representations of the de-
fined classes. A set of the time-scale features is derived as follows:

• Power delta (D) is the power difference between approxi-
mation with detail at highest scale and detail at lowest scale:

D(i) =
1

Nf3

Nf3X
n=1

W
2
i (n) −

1

Nf1

NfX
n=Nf1+1

W
2
i (n). (6)

• Power ratio (PR1) is the power ratio between approxima-
tion and three details at three highest scales:

PR1(i) =
Nf1 − Nf4

Nf4

PNf4

n=1 W 2
i (n)PNf1

n=Nf4+1 W 2
i (n)

(7)

• Power ratio (PR2) is the power ratio between details of
two lowest scales and approximation with detail at highest
scale:

PR2(i) =
Nf3

Nf − Nf2

PNf

n=Nf2+1 W 2
i (n)PNf3

n=1 W 2
i (n)

(8)

• Power of approximation (PA):

PA(i) =

PNf4

n=1 W 2
i (n)

Nf4
(9)
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• Standard deviation of detail at lowest scale (SD):

SD(i) =

vuutPNf

n=Nf1+1 (Wi(n) − Wi(n))2

Nf1
(10)

• Peak delta (PD) is the distance between the peak values of
the first and second lobe obtained from the autocorrelation
function of each speech frame:

PD(i) = Ri(j1) − Ri(j2) (11)

where Ri is the autocorrelation function that shows the
peak values at lag j1 and j2.

• Logarithmic short-term energy (LgSE):

LgSE = 0.5 +
16

ln(2)
ln

 
1 +

PNf

n=1 x(n)2

32

!
(12)

• Zero crossing rate (ZCR):

ZCR =

NfX
n=1

|sgn[x(n) − sgn(x(n − 1))]| (13)

re Nf1 =
Nf

2
, Nf2 =

Nf

4
, Nf3 =

Nf

8
, Nf4 =

Nf

16
are

ces of the approximation and detail parts in the sequence of the
elet coefficients, and Nf is number of samples in one speech
e. The evolution of extracted features is shown in Fig. 2.

Figure 2: Speech signal (a), evolution of features (b), (c).

4. Experiments and Evaluations
apply both discriminative parameter learning by optimizing the
[9] and generative parameter training (ML estimation) [8] on

discriminatively (TAN-OMI) and generatively (TAN-CMI)
tured Bayesian networks. We use the NB and the TAN classi-

topology. Experiments have been performed on data from the
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TIMIT speech corpus using the dialect speaking region 4 which
consists of 16 male and 16 female speakers, 320 utterances, and
121629 frames in total. All speech sounds are sampled at 16 kHz.
The distributions of four phonetic classes V/U/S/M and six pho-
netic classes V/U/S/M/VC/R are 23.08%, 60,37%, 13.54%, 3.01%
and 20.9%, 54.66%, 12.26%, 2.74%, 6.08%, 3.36%, respectively.
We perform classification experiments on data of male speakers
(Ma), female speakers (Fe), and both (Ma+Fe) genders. The data
have been split into 2 mutually exclusive subsets of D ∈ {S1,S2}
where the size of the training data S1 is 70% and of the test data
S2 is 30% of D. Throughout the experiments, we use exactly the
same data partitioning. Additionally, to our 8 time-scale features
(TSF) (see Section 3), we perform experiments using baseline fea-
tures, i.e. , 12 MFCC + Log-Energy. The attributes in the data
sets are continuous-valued. Since the classifiers are constructed
for multinomial attributes, the features have been discretized using
the algorithm in [11] where the codebook is produced using only
the training data. Zero probabilities in the conditional probability
tables of the Bayesian networks are replaced with a small epsilon
ε = 0.00001. Discriminative parameter learning is currently im-
plemented in a naive way. We either perform 15 iterations of the
gradient descent algorithm or prematurely terminate the parameter
optimization in case of convergence.

Table 1 and Table 2 present the classification performance for
all different generative/discriminative classifiers for 4 and 6 pho-
netic classes, respectively.

Table 1: Classification results [%] for 4 classes.
CLASSIFIER NB TAN TAN

STRUCT. LEARN. - CMI OMI
PARAM. LEARN. ML CL ML CL ML CL

DATA SET FEATURES

MA+FE TSF 88.36 88.53 90.67 90.69 90.92 90.96
MA TSF 89.68 89.80 91.11 91.12 91.25 91.27
FE TSF 87.85 87.92 89.55 89.57 90.35 90.38

MA+FE MFCC 88.58 88.76 90.61 90.62 90.64 90.62
MA MFCC 89.01 89.25 90.86 90.88 91.24 91.27
FE MFCC 88.59 88.65 89.85 89.84 89.92 89.92

Table 2: Classification results [%] for 6 classes.
CLASSIFIER NB TAN TAN

STRUCT. LEARN. - CMI OMI
PARAM. LEARN. ML CL ML CL ML CL

DATA SET FEATURES

MA+FE TSF 81.99 82.04 83.00 83.05 83.48 83.50
MA TSF 82.78 82.86 83.93 83.95 84.47 84.47
FE TSF 81.41 81.51 82.24 82.27 82.76 82.75

MA+FE MFCC 82.08 82.16 82.89 82.91 83.39 83.40
MA MFCC 82.35 82.48 83.87 83.88 84.28 84.31
FE MFCC 81.99 82.05 82.63 82.63 83.03 83.06

These tables show that the TAN classifier using discriminative
structure and parameter learning (TAN-OMI-CL) outperforms the
generative approaches. However, the evaluation of the CR in the
OMI algorithm is computationally expensive. Discriminative pa-
rameter learning (CL) produces mostly a better classification per-
formance than generative parameter learning (ML).

The proposed time-scale features outperform the baseline
MFCC features in most cases. This results from the flexibility
of having short basis functions to analyze high-frequency speech
components while long ones are applied on low-frequency speech
components of the DWT. Additionally, for TSF we have only 8
features compared to 13 MFCC features. This results in a lower
complexity of the classifier. The small differences of classification
performance between Ma+Fe, Ma, and Fe open an approach for
gender independent phonetic classification.

5. Conclusion
Bayesian networks are used to classify speech frames into silence,
voiced, unvoiced, mixed sounds, and two more categories voiced
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ure and release of plosives. The classification is based on
-scale features derived from discrete Wavelet transform. Dis-
inative and generative parameter and/or structure learning ap-
ches are used for learning the Bayesian network model. Gen-
dependent/independent experiments have been performed on
IMIT database. Discriminative structure learning of Bayesian
orks is superior to the generative approach. Discriminative
meter training improves the classification rate in most cases.
time-scale features mostly outperform standard MFCC fea-

s. Future work includes the investigation of the time-scale fea-
s to improve the classifiation rate of the plosives.
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