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Abstract
Noise reduction frontends have been developed independently for
speech communication and speech recognition purposes with the
result that one and the same algorithm does not perform well in
both application domains. In this paper we show that noise reduc-
tion filters based on the discrete Fourier transform (DFT) which
are used in speech communication can also perform well in robust
automatic speech recognition (ASR) experiments if some form of
feature smoothing is applied.

We analyse the statistics of the Mel frequency ceptral coeffi-
cients (MFCCs) that are used as speech features and describe the
effects on recognition results if the mean and variance of these
features change. It is shown that recognizers are more sensitive to
an increase in variance of enhanced features than to errors in their
mean values. We present a method that compensates for the in-
creased variance of DFT-based noise reduction frontends by means
of using prior knowledge and smoothing. We achieve high seg-
mental SNR improvements as well as recognition results close to
those of the Advanced Frontend (AFE) of the European Telecom-
munications Standards Institute (ETSI) for all noise types.
Index Terms: robust speech recognition, noise reduction, MFCC,
feature statistics.

1. Introduction
The enhancement of noisy speech signals is a well studied topic
in both speech communication [1] and robust automatic speech
recognition (ASR) [2]. There exist highly specialised algorithms
for each of these applications. Although both applications use
noise reduction towards the common goal of enhancing speech,
their measures of performance are quite different. Only few inves-
tigations have been made into algorithms suitable for both appli-
cations (see e.g. [3, 4]).

One class of noise reduction filters that are successfully em-
ployed in speech enhancement for communication applications con-
sists of optimal estimators for the clean DFT coefficients given the
noisy signal [5, 6]. If the length L of the transform is chosen large
enough, these filters are able to suppress noise in spectral bands
between the harmonics of the fundamental frequency of voiced
speech while leaving spectral peaks untouched. This results in a
relatively high improvement in the segmental SNR.

In contrast to DFT-based filtering for communication appli-
cations noise reduction frontends specialised for robust ASR use
a comparably low spectral resolution. The ETSI AFE [7, 2], for
instance, uses a Mel band smoothed power spectrum to compute
a low resolution time domain Wiener filter. Whenever speech is
present within a Mel band, noise within the same band cannot be
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uated without distorting the speech signal. Since speech dis-
ons are to be avoided, more residual noise will remain during
ch activity leading to lower segmental SNR improvements.
In this paper we present a frontend for robust ASR that uses

resolution DFT-based spectral estimators such as the log-
tral-amplitude (LSA) estimator [5] or estimators based on a
lacian speech distribution and a Gaussian noise model (LG,

These estimators are briefly discussed in Section 2. A com-
son of these filters with the AFE in terms of the segmental SNR

s the superiority of filters with high spectral resolution for
n speech reconstruction. However, the MFCCs of enhanced
ch have a higher variance for the DFT-based noise reduction
rs than features computed using the AFE. The effects of this
ease on the recognition results are analysed in Section 3. In
ion 4 we present a solution that reduces the variance of the
res and show that this leads to an increase in robustness of
SR. Section 5 summarises experimental results and presents

lusions.

2. Noise reduction in the DFT domain
is section we describe the DFT-based noise reduction. The
coefficients Y (λ, k) = S(λ, k) + N(λ, k) of the noisy sig-

in frame k and frequency bin λ are assumed to be the sum
e clean speech spectrum S(λ, k) and the uncorrelated noise
, k). For the sake of simplicity we will leave out the frequency

index λ and the frame index k whenever possible.
The estimate bS of the spectral coefficient S of clean speech is
nction bS = G(Y, Pn, ξ) (1)

e noisy coefficient Y , the noise power Pn = En

˘|N |2¯
, and

priori SNR ξ = Ps/Pn, where Ps = En

˘|S|2¯
denotes the

ch power. As speech and noise are assumed to be uncorrelated
ave En

˘|Y |2¯
= Ps + Pn. G(Y, Pn, ξ) takes small values

ins with low SNR. Thus, for time signals sampled with a sam-
g rate fs speech and noise can be separated with a maximal
tral resolution of fs/L.
In our evaluation we consider two estimators, the LSA [5] and
G estimators [6, (27)]. Both filters need knowledge about Pn

ξ. Here we use the decision-directed approach [8] to obtain
stimate bξ of the a priori SNR. The estimate bPn of the noise
er is calculated as the empirical mean by recursive averaging
eech pauses. The empirical mean of |N |2 is an estimator that

dependent of the statistical distribution of |N |2 and is therefore
ble for different noise types. As we use the same speech pause
ction for all experiments, it has no influence on the relative
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Fig. 1. Standard deviation of the first nine components c1 to c9 of
feature vectors from state 12 of the word “oh”. The noisy features
are disturbed by car noise at an SNR of 10dB. The corresponding
filter results for the LSA estimator, the LG estimator, and the AFE
are shown.

performance and is therefore not described here.
The estimated clean speech spectrum bS is transformed back

into time domain and a filtered time signal is synthesised using the
overlap-add procedure. The calculation of the segmental SNR as
well as the MFCC speech features is based on this time domain
signal.

3. Analysis of feature variance
Figure 1 shows the standard deviation of the first 9 MFCCs ci, i =
1 . . . 9, of feature vectors calculated according to [9]. These fea-
tures belong to state 12 of the HMM for the word “oh”. They are
extracted using the time information of a clean speech recognition
experiment based on 106 utterances of male speakers. The corre-
sponding mean values are given in Figure 2. Apart from the clean
MFCCs the features are given for perturbation by car noise at 10dB
SNR and for the corresponding filter results for the LSA estimator,
the LG estimator, and the AFE.

In the case of the noisy, unfiltered signal the variance of the
features is reduced as the dynamic range of the spectral magni-
tudes is limited due to the noise floor. Their mean values do not
correspond to those of clean speech, though. On average, the noise
reduction moves the estimated coefficients c1 to c8 towards the
mean of the clean coefficients (cf. Fig. 2). In case of the DFT-
based estimators the variance of the features rises above the level
of the clean case (Fig. 1). Note that the AFE does not change the
mean and the variance of the MFCCs with higher indices. Only
the coarse envelope of the signal spectrum is changed which is
represented by the MFCCs with low indices.

We will show in the following that speech recognizers based
on HMMs are more sensitive to an increase in variance of the fea-
ture vectors than to a shift of their mean values. For this analysis,
we consider a single MFCC feature vector component ci and ap-
proximate its distribution by a normal probability density function
(pdf). In the training of a HMM the mean μc and the variance σ2

c

of the emission density pj(ci) = N (ci; μc, σ
2
c ) in a state j are

estimated.
During recognition the estimated clean coefficient bci is calcu-

lated which is also modelled by a normal random variable with
mean μbc and variance σ2

bc . We denote its pdf by pbc(bci). For recog-
nition the likelihood pj(bci) is evaluated. The expected normalised
likelihood En {pj(bci)} is given by

En {pj(bci)} =
1

Ec

∞Z
−∞

pj(bci) pbc(bci) dbci =

√
2σ2

cp
σ2

c + σ2
bc
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2. Mean values of the first nine components c1 to c9 of feature
ors from the word “oh”. The graphs shown correspond to those
igure 1.
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re Ec = 1/
√

4πσ2
c is the expected likelihood for clean speech,

μbc = μc, σ2
bc = σ2

c . En {pj(bci)} represents the average recog-
n result for state j. Figure 4 shows En {pj(bci)} for the case

n estimate bci with correct mean (μbc = μc) and different vari-
s σ2

bc . Figure 3 shows En {pj(bci)} for different mean values
nder the condition that the variance of the estimated features
ls that of clean features (σ2

bc = σ2
c ). For clean speech we have

σ2
c = 1 and (μbc −μc) = 0. Note that the slope at these points

uch steeper for variance deviations than for deviations in the
n. The recognizer is more sensitive to an increase in variance
to a shift in mean values.

According to Figure 3 the shifted mean values of the noisy
res in Figure 2 lowers the expected likelihood En {pj(bci)}
ugh their variance is lower than that of the clean features. The

e reduction delivers feature vectors with mean values closer
ose of clean speech, but in the case of DFT-based estimators
variance rises above σ2

c which lowers En {pj(bci)} according
ig. 4. The advantage of the smoothed filter of the AFE is a low
ance of the enhanced features (see Fig. 1).
Note that from Figs. 1 and 2 the robustness of model-based
e compensation methods can also be explained. A simple ver-
of noise compensation shifts the mean vectors of the model
ities by the mean vector of noise only features. On one side
y features have a lower variance than the models of the recog-
r suggest for clean features, that is σ2

bc < σ2
c , and on the other

the mean values of the model only need to be corrected to
an extend that μbc − μc < σc/2.

4. Reduction of feature variance
el coefficients are weighted sums of several DFT magnitudes,

Mel spectrum is a smoothed version of the DFT spectrum. In
rast to the Mel coefficients the magnitude squared coefficient
therefore has a comparably high variance. In consequence,

stimated coefficients bS also have a higher variance.
Additionally, the LSA and the LG estimator use the data driven
sion-directed approach [8] to estimate the parameter bξ. It is
n by

bξ(λ, k) = α
|bS(λ, k − 1) |2bPn(λ, k − 1)

+(1 − α) max

"
|Y (λ, k) |2bPn(λ, k)

− 1, 0

#
. (3)
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Fig. 3. Relation between expected likelihood En {pj(bci)} and fea-
ture mean value μbc for a feature variance σ2

bc = σ2
c .

It is a function of |Y (λ, k) |2 itself and therefore the variance of
this estimate is especially high for frequency bins λ with low SNR.

The increase in variance can be reduced, if the data-driven
decision-directed approach in equation (3) is replaced by a model-
driven approach for frequency bands with low SNR. The following
procedure is based on the rationale that we can compare a first es-
timate of the speech energy bPs(λ, k) with prior knowledge of the
spectral shape of Ps(λ, k) created from clean speech. For the com-
parison we rely on those bins λ where the first estimate is relatively
accurate. These are frequency bins with high SNR bξ(λ, k). The
result of the lookup is then used to interpolate those bins where the
SNR is low and the estimate is strongly influenced by the noise.

For the description of the prior knowledge we use a Gaussian
mixture model (GMM) with N = 100 mixture components that
are trained using the clean training data of [9]. The GMM models
the pdf of feature vectors composed of the M = 23 logarithmic
Mel filter energies and the energy of the clean speech frame k.
We used diagonal covariance matrices. A GMM for vectors of the
spectral values of the DFT was not considered due to complexity
reasons.

For each signal frame k we calculate an estimate of the clean
speech power bPs(λ) = bξ(λ) bPn(λ) and the power in the m-th Mel
band bP mel

s (m) =

L/2+1X
λ=1

Wm(λ) bPs(λ). (4)

The spectral weights Wm(λ) for the calculation of the Mel filter
energies are normalised to give

PL/2+1

λ=1
Wm(λ) = 1. The feature

vector bP log

s of the log-Mel filter energies for the lookup is calcu-

lated as bP log

s = ( bP log
s (1) . . . bP log

s (M), E l
s), with bP log

s (m) =

log( bP mel
s (m)) and the frame energy E l

s = log(
PL

λ=1
|S(λ)|2).

From the GMM we calculate a new estimate

eP mel

s =

NX
n=1

p(n| bP log

s ) · exp(μmel
s (n)) (5)

p(n| bP log

s ) =
βn p( bP log

s |n)PN
n=1

βn p( bP log

s |n)
(6)

where βn is the mixture weight and μmel
s (n) is the mean vector of

mixture component n. eP mel

s = ( eP mel
s (1) . . . eP mel

s (M)) repre-
sents the model-based Mel energy estimates. Note that exp(μmel

s )
is calculated component wise and gives a representation of μmel

s

in the linear Mel domain. In this operation we do not use E l
s.

We then determine low SNR bands in the Mel domain by com-
puting
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4. Relation between expected likelihood En {pj(bci)} and fea-
variance σ2

bc for correct mean (μbc = μc).

bξmel(m) =

L/2+1X
λ=1

Wm(λ)bξ(λ). (7)

compare these to a threshold bξmel
th .

We interpolate the speech power for Mel bins with low SNR
alculating the difference between the information from the
r model and the actual value

bbP mel

s (m) =

j
0 bξmel(m) ≥ bξmel

th

max( eP mel
s (m) − bP mel

s (m), 0) else.
(8)

clipping of speech has a strong negative effect on the recog-
n results, we use the max-function. From experiments the

shold for the local SNR was chosen as 10 log10(
bξmel
th ) = 8dB.

The DFT representation of Δ
bbP mel

s is then calculated as

Δ
bbP s(λ) =

MX
m=1

Wm(λ)Δ
bbP mel

s (m), (9)

lly we obtain a reestimate of the a priori SNR in the DFT
ain bbξ(λ) =

bPs(λ) + Δ
bbP s(λ)bPn(λ)

, (10)

h is used in (1) instead of bξ. The use of Δ
bbP s(λ) has the

ntage that bbξ takes the values of bξ for frequency bands with
SNR. Thus the frequency resolution is not reduced in those
s.

The increase in robustness by using the prior knowledge con-
d in the GMM in case of frequency bins with low SNR can be
in a comparison of the variances of the MFCCs in Fig. 5.

5. Experimental results and conclusions
rder to demonstrate the effectiveness of the DFT-based filters
rms of clean speech reconstruction we evaluated the improve-
t of the segmental SNR for car noise at different noise levels.
that for the segmental SNR, noise is defined as the difference
een the clean speech signal and the filtered signal in speech-
e signal frames. Here, the segmental SNR for the analysis of
esults considers frames with frame energy not less than -45db
e maximum frame energy of the utterance in the clean case.
segmental SNR therefore is a combined measure of speech
rtion and noise suppression during speech presence. The re-
for the segmental SNR improvement shown in Table 1 are an

age over 1001 sentences disturbed by car noise taken from the
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Fig. 5. Reduced standard deviation of the feature vectors by the
use of the presented approach (case “gmm”). The results for the
case “no gmm” are the same as in Figure 1. The feature smoothing
of [10] has not been applied.

segm. SNR impr. word accuracy
Filter 10dB 15dB 20dB 10dB 15dB 20dB
none 0.0 0.0 0.0 92.63% 96.51% 98.39%
AFE 5.3 2.5 0.0 95.97% 97.85% 98.78%
LSA (GMM) 6.9 5.7 4.6 95.29% 97.67% 98.57%
LG (GMM) 6.9 5.8 4.7 95.65% 97.91% 98.57%

Table 1. Improvement of the segmental SNR in dB and corre-
sponding recognition results for car noise. The SNR of the noisy
input signals was 10dB, 15dB, and 20dB as defined in [9].

test set [9]. The estimator 3 of the SNR for the DFT-based filters
used a value α = 0.92, which gave best recognition results.

The recognition results that are achieved with the AFE and our
DFT-based noise reduction are also shown. The recognition scores
are obtained within the AURORA2 framework [9].

The HMMs of the recognizer consisted of 16 states per model
and each state had three Gaussian mixture components with diag-
onal correlation matrices. The features for the DFT-based fron-
tend consisted of the thirteen MFCCs c0 to c12 and their delta and
delta-delta values, resulting in vectors with 39 components. The
feature smoothing of [10] has been used in all recognition experi-
ments with the DFT-based filters. The postprocessing of [10] was
used in such a way that after cepstral mean and variance normali-
sation a smoothing of the features was performed that generates a
smoothed frame k out of frames k − 2 to k + 2. The training was
done with clean data. The AFE was not modified and the training
for this frontend was done separately. The results for the three test
sets given in Table 2 are the word accuracies averaged for noise
levels from 0dB to 20dB as defined in [9].

From results in Tables 1 and 2 it can be seen that DFT-based
noise reduction frontends perform well in terms of segmental SNR
improvement and word accuracies. However, despite significantly
lower segmental SNR value, Table 2 shows that the AFE is still
more robust than the DFT-based methods, when the full set of ex-
periments with all noise types is considered. We attribute this to
the lower variance of the features calculated with the AFE. Fur-
thermore, informal listening tests reveal, that the auditive quality
of the AFE processed speech is lower than the quality of the DFT
processed speech.

For DFT-based noise reduction filters we conclude that the
gain in the segmental SNR does not result in equally improved
recognition scores, since the variance of the MFCC features is also
increased. Therefore improved noise reduction filters have to bal-
ance both aspects.
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test set
Filter A B C
none 84.41% 85.55% 84.29%
AFE 87.74% 87.09% 85.45%
LSA (no GMM) 85.64% 85.56% 85.97%
LSA (GMM) 85.99% 85.74% 85.73%
LG (no GMM) 85.66% 85.40% 85.54%
LG (GMM) 85.93% 85.57% 85.56%

le 2. Word accuracies in percent for the AURORA2 recog-
n task and training on clean data. The results for the solu-
described in section 4 are marked as “GMM”. The case “no

M” describes the results for the conventional decision-directed
oach (3).

This work is funded by the German Research Foundation .
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D. Jouvet, H. Kelleher, D. Pearce, and F. Saadoun,
“Evaluation of a noise-robust DSR front-end on AURORA
databases,” International Conference on Spoken Language
Processing (ICSLP), pp. 17–20, Sept. 2002.

R. Gemello, F. Mana, and R. de Mori, “Automatic speech
recognition with a modified Ephraim-Malah rule,” IEEE Sig-
nal Processing Letters, vol. 13, no. 1, pp. 56–59, Jan. 2006.

P. Setiawan, S. Suhadi, T. Fingscheidt, and S. Stan, “Robust
speech recognition for mobile devices in car noise,” in
Interspeech – Conference on Speech Communication and
Technology, Sept. 2005, pp. 2673–2676.

Y. Ephraim and D. Malah, “Speech enhancement using a
minimum mean-square error log-spectral amplitude estima-
tor,” IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 33, no. 2, pp. 443–445, Apr. 1985.

R. Martin, “Speech enhancement based on minimum mean-
square error estimation and supergaussian priors,” IEEE
Transactions on Speech and Audio Processing, vol. 13, no. 5,
pp. 845–856, Sept. 2005.

ETSI standard document, “Speech processing, transmission
and quality aspects (STQ); distributed speech recognition;
advanced front-end feature extraction algorithm; compres-
sion algorithms,” ETSI ES 202 050 V1.1.3, Nov. 2003.

Y. Ephraim and D. Malah, “Speech enhancement using a
minimum mean-square error short-time spectral amplitude
estimator,” IEEE Transactions on Acoustics, Speech and Sig-
nal Processing, vol. 32, no. 6, pp. 1109–1121, Dec. 1984.

H.-G. Hirsch and D. Pearce, “The AURORA experimental
framework for the performance evaluations of speech recog-
nition systems under noisy conditions,” ISCA Workshop on
Automatic Speech Recognition, Sept. 2000.

C.-P. Chen, J. A. Bilmes, and K. Kirchhoff, “Low-resource
noise-robust feature post-processing on Aurora 2.0,” In-
ternational Conference on Spoken Language Processing
(ICSLP), pp. 2445–2448, Sept. 2002.


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Rainer Martin
	------------------------------

