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Abstract
This paper describes how formant frequencies of voiced and un-
voiced speech can be predicted from mel-frequency cepstral coef-
ficients (MFCC) vectors using maximum a posteriori (MAP) esti-
mation within a hidden Markov model (HMM) framework. Gaus-
sian mixture models (GMMs) are used to model the local joint den-
sity of MFCCs and formant frequencies. More localised prediction
is achieved by modelling speech using voiced, unvoiced and non-
speech GMMs for every state of each model of a set of HMMs. To
predict formant frequencies from a MFCC vector, first a prediction
of the speech class (voiced, unvoiced or non-speech) is made. For-
mant frequencies are predicted from voiced and unvoiced speech
using a MAP estimation made using the state-specific GMMs.
This ‘HMM-GMM’ prediction of speech class and formant fre-
quencies was evaluated on a male 5000 word unconstrained large
vocabulary speaker-independent database.
Index Terms: formants, MAP, GMM, HMM, DSR.

1. Introduction
Formants correspond to resonances in the vocal tract and may be
used to recognise, synthesise, encode or enhance speech. Tradi-
tional methods for their estimation include peak-picking using ei-
ther short-time spectra [1] or linear predictive coding (LPC) spec-
tra [2] and root-finding using LPC analysis [3]. However, in a
distributed speech recognition (DSR) environment, only MFCC
vectors are transmitted to the remote back-end. Inverting MFCC
vectors to magnitude spectra through zero-padding, inverse dis-
crete cosine transform (DCT), exponential operation and interpo-
lation results in spectral smoothing as much information is lost, in
particular precise formant location information [4]. Because it is
harder to distinguish between potential formants in such spectrally
smooth spectra, traditional formant estimation techniques would
be unable to accurately estimate formants.

Previous work has shown how formant frequencies associated
with voiced speech can be predicted from MFCC vectors using a
single GMM which models voiced speech [4]. Neither the tem-
poral correlation of formants nor the model and state specific re-
lationship between MFCCs and formant frequencies were consid-
ered. It has also been demonstrated that fundamental frequency
can be predicted from MFCC vectors by employing model and
state specific GMMs within a framework of a set of HMMs [5].
The aim of the work presented here is to extend these prediction
techniques to firstly predict the speech class as voiced, unvoiced or
non-speech. Secondly, for MFCC vectors predicted as voiced or
unvoiced, appropriate state-specific GMMs will be used to predict
formant frequencies from MFCCs of unconstrained speech using
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imum a posteriori (MAP) estimation. Experimental results are
ented in section 3 and conclusions are drawn in section 4.

2. HMM-GMM Prediction
iction of speech class and formant frequencies from MFCC
ors comprises two parts. First, the local joint density of
Cs and formant frequencies is modelled using GMMs spe-
to the states of a set of HMMs. Secondly, a prediction of

ch class (voiced, unvoiced or non-speech) is made. For MFCC
ors predicted as voiced or unvoiced, formant frequencies are
icted using the statistical information in the state-specific
els. Model and state sequences are determined through Viterbi
ding.

Modelling of MFCCs and Formant Frequencies

elling the joint density of MFCC vectors and formant frequen-
requires forming a set of augmented feature vectors, y:

yi = [xi,Fi]
T (1)

re vector xi = [x(0), x(1), . . . x(12), ln(e)] comprises static
Cs 0 to 12 and log energy for the ith frame of speech. The
ant frequency vector Fi = [F (1), F (2), F (3), F (4)] com-
s the frequencies of the first four formants of the ith frame
eech. Reference formant frequencies are obtained using LPC

ysis to produce the poles of each frame of speech which form
al formant estimates. Kalman filtering is used to improve the
racy of the resulting formant frequency estimates [6]. During
speech periods, the formant vector, Fi is set to zero. Ref-
ce voicing decisions are obtained using the ETSI Aurora Ex-
ed Advanced Front End voicing classifier [7].
A set of W monophone HMMs, Λ = [λ1, λ2, . . . , λW ], is
ted such that each monophone is modelled by a HMM. Baum-
ch re-estimation is used to train the set of HMMs using each

C vector, x, along with its velocity and acceleration deriva-
. Associated with each state of every HMM are three GMMs.
model the joint density of MFCC vectors and formant fre-
cies: one for voiced speech and the second for unvoiced
ch. The third GMM which models non-speech periods only
ains MFCCs, as formants are not associated with non-speech.
e state-specific GMMs are created by realigning training data

ors to the HMMs using Viterbi decoding. For each training
ance, X = [x1,x2, . . . ,xN ], comprising N MFCC vectors,
el allocations, m = [m1, m2, . . . , mN ], and state allocations,
[q1, q2, . . . , qN ], are obtained by forced alignment with an-

tions. For a given utterance, the ith MFCC vector, xi, is asso-
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ciated with a model, mi, and state, qi, where mi = 1, . . . , W and
qi = 1, . . . , Smi . The number of models is given by W and the
number of states in model mi is given by Smi .

Vector pools are formed to collect together feature vectors
from each model, w, and state, s, for voiced, unvoiced and non-
speech frames from the set of training data, Z. The pool of training
feature vectors deemed voiced is given by:

Ωs,w = {yi ∈ Z : voicing(xi) = voiced, qi = s, mi = w}
1 ≤ s ≤ Sw, 1 ≤ w ≤ W (2)

where voicing(xi) is either voiced, unvoiced or non-speech ac-
cording to the reference speech class decision.

Similarly, unvoiced, Ψs,w, and non-speech, Υs,w, pools are
formed. For certain model and state combinations, pools will be
empty, or at least sparse, due to lack of data. For example, there
are no non-speech feature vectors for the centre state of model /ae/.

Model and state dependent voiced, unvoiced and non-speech
GMMs (Φv

s,w, Φu
s,w and Φns

s,w) each comprising K clusters
are created from each of the vector pools using unsupervised
expectation-maximisation (EM) training. For example, the state-
specific voiced GMMs for state s and model w are given by:

Φv
s,w(y) =

KX
k=1

αv
k,s,w φv

k,s,w(y)

=

KX
k=1

αv
k,s,w N (y, μv,y

k,s,w,Σv,yy
k,s,w) (3)

where αv
k,s,w is the prior probability of the kth cluster in the voiced

GMM for state s of model w. The voiced GMM comprises K
Gaussian PDFs, φv

k,s,w(y), given by mean vector, μv,y
k,s,w, and co-

variance matrix, Σv,yy
k,s,w:

μv,y
k,s,w =

»
μv,x

k,s,w

μv,F
k,s,w

–
and Σv,yy

k,s,w =

"
Σv,xx

k,s,w Σv,xF
k,s,w

Σv,Fx
k,s,w Σv,FF

k,s,w

#
(4)

where Σv,xF
k,s,w is the cross-covariance matrix of MFCC and for-

mant frequency vectors for the kth cluster of model w and state s.
This matrix describes the local relationships between MFCCs and
formant frequencies.

Model and state dependent unvoiced and non-speech GMMs
(Φu

s,w and Φns
s,w) can be similarly described, although formants are

excluded for non-speech models, leaving only the MFCC compo-
nent.

For each state, s, of every model, w, a prior voiced probability,
P (v|s, w), is defined as the proportion of voiced vectors in that
model and state:

P (v|s, w) =
NΩs,w

NΩs,w + NΨs,w + NΥs,w

1 ≤ s ≤ Sw, 1 ≤ w ≤ W (5)

where NΩs,w is the number of voiced vectors, NΨs,w the number
of unvoiced vectors and NΥs,w the number of non-speech vectors
in state s of model w. Similarly, prior unvoiced and non-speech
probabilities, P (u|s, w) and P (ns|s, w), are calculated for each
state, s, of every model, w, such that P (v|s, w) + P (u|s, w) +
P (ns|s, w) = 1. As an example, for the centre state of the
phoneme /ae/, P (v|s, w) = 0.932, P (u|s, w) = 0.068 and
P (ns|s, w) = 0.
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Prediction of Voicing Class and Formant Frequencies

an input MFCC vector stream, X = [x1,x1, . . . ,xN ],
rbi decoding is used to obtain a model sequence, m =
, m2, . . . , mN ], and state sequence, q = [q1, q2, . . . , qN ].
Predictions of formant frequencies are made from voiced and
iced speech, so first the voicing of an input MFCC vector,

must be determined. The probability of a MFCC vector, xi,
ing from voiced speech in state qi of model mi is calculated

P (v|xi, qi, mi) =
P (v|qi, mi) p (xi|v, qi, mi)

p (xi|qi, mi)
(6)

re P (v|qi, mi) is the prior probability of the voiced class
equation 5), p(xi|qi, mi) is the prior probability of vector

nd p(xi|v, qi, mi) is given by the corresponding marginalised
M Φv,x

qi,mi
:

i|v, qi.mi) = Φv,x
qi,mi

(xi) =

KX
k=1

αv
k,qi.mi

φv,x
k,qi,mi

(xi)

=

KX
k=1

αv
k,qi.mi

p(xi|φv,x
k,qi,mi

) (7)

re p
“
xi|φv,x

k,qi,mi

”
is the marginal distribution of the MFCC

or for the kth cluster of the voiced GMM in state qi and model

The probabilities of the input MFCC vector, xi, coming from
iced speech and non-speech are also calculated in a similar
using equations 6 and 7. An input MFCC vector is deemed to
om voiced speech, unvoiced speech or non-speech depending
e largest overall speech classification probability.

If a given input MFCC vector is predicted to be from voiced
nvoiced speech, formant frequencies are then predicted. For
iction from voiced MFCC vectors, the maximum a posteriori
P) [8] estimation of the ith vector of formant frequencies, F̂i,
xi is given by:

F̂i = arg max
Fi

˘
p

`
Fi|xi, Φ

v
k,qi,mi

´¯
(8)

ant frequency predictions from each cluster are weighted by
osterior probability, hk,qi,mi(xi), of the ith MFCC vector xi,
nging to the kth cluster:

F̂i =

KX
k=1

hk,qi,mi(xi)

j
μv,F

k,qi,mi
+

Σv,Fx
k,qi,mi

“
Σv,xx

k,qi,mi

”−1 “
xi − μv,x

k,qi,mi

” ff
(9)

posterior probability, hk,qi,mi(xi), is given by:

hk,qi,mi(xi) =
αv

k,qi,mi
p

“
xi|φv,x

k,qi,mi

”
KX

k=1

αv
k,qi,mi

p
“
xi|φv,x

k,qi,mi

” (10)

formant frequency prediction from MFCC vectors deemed to
nvoiced, the set of unvoiced GMMs, Φu

s,w, is used in equations
10.
A five point median filter is used to smooth each formant track
emoving discontinuities. Segments of speech and non-speech
lso forced to have a minimum duration of 30ms.



3. Experimental Results
The accuracy of speech class and formant frequency prediction is
measured by comparison with reference formants obtained using
LPC analysis followed by Kalman filtering. Evaluation measures
are defined and used to investigate the accuracy of voicing class
and formant frequency prediction. Results are presented for vary-
ing numbers of clusters in each GMM, followed by results for de-
creasing signal to noise ratio (SNR).

3.1. Database and Evaluation Measures

Male speech from a subset of the speaker-independent 5000 word
WSJCAM0 large vocabulary database [9] was used to evaluate
speech class and formant frequency prediction. A set of 1080 ut-
terances (780,734 vectors) from 54 speakers was used for training
and 765 utterances (517,573 vectors) from 10 different speakers
were used for testing. MFCCs were extracted from the 8kHz sam-
pled speech using 25ms frames with a 10ms shift in accordance to
the ETSI Aurora standard [10].

Two error measures are used to evaluate prediction accuracy.
Speech classification error, Ec, indicates the percentage of frames
where incorrect voicing prediction either leads to formant fre-
quency predictions being made from non-speech or no predictions
made during speech:

Ec =
Nv|ns + Nu|ns + Nns|v + Nns|u

Ntotal
× 100% (11)

where Nv|ns and Nu|ns are the number of non-speech frames clas-
sified as voiced and unvoiced, Nns|v and Nns|u are the number
of voiced and unvoiced frames classified as non-speech respec-
tively and Ntotal is the total number of frames in the test data. For
frames classed as voiced or unvoiced, separate percentage formant
frequency errors are calculated as the mean formant frequency pre-
diction error across all four formants:

Ep =
1

4

4X
j=1

1

N

NX
i=1

˛̨̨
˛̨ F̂i(j) − Fi(j)

Fi(j)

˛̨̨
˛̨ × 100% (12)

where j denotes formant number and N is the number of frames
for which the speech class was predicted as voiced or unvoiced.

For certain state and model combinations, there were insuffi-
cient data to successfully create GMMs with more than one cluster.
For example, it was not possible to create voiced GMMs with more
than one cluster for the unvoiced phoneme /s/ as only a few voiced
frames were recognised as /s/ by the recogniser at the boundary
between /s/ and voiced phonemes. Therefore the number of clus-
ters, K, in the results refers to the requested number of clusters
for a particular GMM. During prediction, if a GMM with the re-
quested number of clusters was not available, the GMM with the
next highest number of clusters was used.

One of the problems in evaluating formant frequency estima-
tion techniques is the lack of large speech corpora containing base-
line formants such as those from hand-labelled spectrograms. In
order to provide further evidence of the effectiveness of HMM-
GMM formant frequency from MFCC vectors, formant frequen-
cies are also predicted from the means of the GMMs to provide
a worst case scenario of prediction. Formant frequency predic-
tion from the means of the GMMs makes no use of input MFCC
vectors, so is based entirely on prior statistical knowledge. For
an input MFCC predicted as voiced, predicting formant frequen-
cies from the means of the GMMs is performed by setting xi to
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qual to the mean of the MFCCs for the kth cluster of the ap-
riate state-specific voiced GMM, μv,x

k, , in equation 9 and by
ng p(xi|φv,x

k ) = 1. This reduces equation 9 to:

F̂i =

KX
k=1

αv
k,qi,mi

μv,F
k,qi,mi

(13)

procedure is the same for MFCCs predicted as unvoiced, ex-
that unvoiced GMMs are used and p(xi|φu,x

k ) is set to 1.

Prediction Accuracy using Clean Speech

, prediction accuracy was investigated as the number of clus-
in each state-specific GMM in the HMM framework was var-

Table 1 shows the speech classification confusion matrix.
ut 20% of frames deemed to be non-speech according to the
ence speech classification are wrongly predicted as unvoiced.
is mainly due to recognition errors, typically at monophone
daries, from the recogniser used to obtain model and state
ences. The recogniser used a simple unconstrained grammar
has a monophone recognition accuracy of 56%. There is lit-
onfusion between non-speech and voiced speech because of
large difference in energy level between these segements of
ch.

Predicted
non-speech unvoiced voiced

rrect
non-speech 000.78940 00.19800 00.01260
unvoiced 0.0074 0.8455 0.1471
voiced 0.0016 0.1072 0.8911

Table 1: Confusion matrix for speech class prediction

Figure 1a presents speech class prediction error, Ec, as the
ber of clusters in the state-specific GMMs is varied. The num-
f clusters in each state-specific GMM has very little effect on
ch class prediction error, which remains at 5.16%. This indi-
s that speech classification, which is largely based on energy, is
ribed by a relatively simple distribution, easily modelled with
cluster for each state-specific GMM.

re 1: a) speech classification error (Ec) and b) mean percent-
error (Ep) with increasing numbers of clusters

Figure 1b shows formant frequency prediction error measures
ed according to whether MFCC vectors were classified as

ed or unvoiced. The combined voiced and unvoiced for-
t frequency prediction error results (not plotted) would be the
hted combination of the voiced and unvoiced plots. Both
ed and unvoiced formant frequency prediction errors decrease



with increasing numbers of clusters due to the improved modelling
of the MFCC and formant frequency distributions. The great-
est improvement in formant frequency prediction accuracy occurs
when the number of clusters is increased from one to two. For-
mant frequency prediction is more accurate for frames predicted
as voiced than those predicted as unvoiced because of the clearer
formant structure in voiced speech.

Comparing MAP prediction of formant frequencies with pre-
diction given as the means of the GMMs (indicated by the dotted
lines in figure 1b) shows that prediction from just the means of the
GMMs is less accurate, as expected. This confirms that there is
sufficient information described by the MFCC vectors to allow the
prediction of formant frequencies.

3.3. Prediction Accuracy using Noisy Speech

In this section, speech class and formant frequency prediction er-
rors are presented for prediction in the presence of noise. ‘Exhibi-
tion hall’ noise, extracted from the ETSI Aurora database [10] was
added to clean speech at SNRs from 20dB to −5dB. This noise was
chosen as the contaminant because it contains competing speakers
and noises with narrow high-energy frequency bands which resem-
ble formants. Prediction in noise was carried out using unmatched
condition testing: the system was trained using clean speech, but
tested with noisy speech, causing a mismatch between the clean
speech models and noisy test data. Figure 2a shows that as the
SNR decreases, speech class prediction error increases due to the
variability introduced by the noise and decreasing state sequence
accuracy obtained through Viterbi decoding. The unconstrained
monophone recognition accuracy of the Viterbi decoding is 56%
using clean speech, but falls to 17% at −5dB.

Figure 2: a) speech classification error (Ec) and b) mean percent-
age error (Ep) with decreasing SNR

Figure 2b shows that at SNRs greater than about 5dB, the
percentage formant frequency prediction error, Ep, is lower for
frames predicted as voiced, rather than unvoiced speech. Ep in-
creases more rapidly with increasing noise for frames predicted as
voiced. This is partly attributed to the increasing number of voiced
frames incorrectly predicted as unvoiced which count as unvoiced
frames for formant frequency prediction error measures, despite
being from voiced speech, where formants are more clearly de-
fined. In figure 2b, as noise increases, prediction error from the
means of the GMMs also increases due to the greater variability
of the noisy MFCC vectors which corrupts the state sequence and
hence state-specific mean GMM values. Even at −5dB, MAP pre-
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on of formant frequencies is more accurate than prediction
the means of the GMMs. The figure shows that the plots
AP prediction and prediction from the means begin to con-

e as the SNR decreases. It is expected that at some SNR below
B, MAP prediction of formant frequencies will be no better
prediction from the means of the GMMs as noise dominates
ignal.

4. Conclusions
work has shown how it is possible to predict speech class

formant frequencies (for voiced and unvoiced speech) from
C vectors. This allows formants to be obtained in a dis-
ted speech recognition environment, where the time-domain
eform is unavailable and the spectrum obtained through invert-

FCC vectors is too crude for traditional formant estimation
niques.
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