INTERSPEECH 2006 — ICSLP

Developing Speech Dialogs For Multimodal HMIs Using Finite State Machines

Silke Goronzy, Raquel Mochales, Nicole Beringer

3Soft GmbH, Speech Dialog Systems Group
Frauenweiherstr. 14, 91058 Erlangen, Germany
silke.goronzy@3soft.de

Abstract

We present a tool for model-based development of multimodal in-
terfaces. The HMI model captures all involved modalities, thus
ensuring highly consistent interfaces. In this paper we focus on
the development of speech dialogs. These are specified using state
machines, which is in contrast to the traditional way of using flow-
charts. The usage of state machines gives us the possibility to fully
specify the HMI so that it contains enough information to be fully
simulated without the need to connect any target applications as
well as for automatic target code generation. Due to the extensive
simulation capabilities usability evaluations can be conducted at
very early design stages. We further explain how different dialog
strategies for different user types can be developed with the help
of the user modelling plug-in. The tool thus supports the whole
development chain starting from design studies to specification,
development and testing over usability studies and target imple-
mentation.

Index Terms: multimodal dialog tool, multiple state machines,
user modelling, simulation, integrated development.

1. Introduction

Speech dialog systems evolve more and more in real world appli-
cations such as automated call centres or automotive infotainment
systems. Such systems are often praised to be intuitive and natural
and the users’ expectations are correspondingly high. When using
such systems however, users very quickly come across the sys-
tems’ limitations. Especially in automotive environments where
speech dialog systems are usually coupled with graphical/haptical
interfaces to build multimodal interfaces some problems arise that
are not easy to understand for system users. One of the biggest
problems is the inconsistency between the different modalities.
We have developed a tool for model-based development of multi-
modal human machine interfaces (HMI). All modalities are speci-
fied and developed as part of the same HMI model, thus ensuring
consistency between the different modalities. The tool supports all
phases necessary in (industrial) HMI development, such as design,
specification, implementation of the HMI and finally generation
of source code for the target platform for both graphical/haptical
interface and speech dialog. In this paper we focus on the speech
dialog part, i.e. how we specify, model and test speech dialogs.
Many industrial dialog systems use state machines, but during the
specification phase the different dialogs are still specified using
flow-charts which have to be manually converted into a machine-
readable dialog description for a (state-based) dialog manager. We
directly specify the dialog using state-charts, thus the dialog model
we create IS the complete specification. This has many advantages
in terms of simulation capabilities and the possibility to incorpo-

1774

rate a large number of test details in the speech dialog specifica-
tion. The paper is structured as follows: In section 2 we describe
the general architecture of our HMI modelling tool. Section 3 then
gives more details on how speech dialogs are modelled. Section 4
describes the user modelling that supports the designer in defining
different dialog strategies and properties for different user groups
before we outline in section 5 how the tool and its simulation ca-
pabilities are used for conducting usability evaluations.

2. tresos GUIDE

tresos GUIDE is a tool for the generation of complex multimodal
human machine interfaces (HMIs). It follows a model-based de-
velopment approach. In contrast to other approaches, where dif-
ferent modalities are developed rather independently of each other,
we use one HMI model to specify all modalities. For the different
tasks involved in HMI development, such as designing screens,
widgets, menu logic, speech dialog etc. we have specialised edi-
tors. The menu logic is defined using UML-compliant state ma-
chines. Transitions between states are triggered by events and so-
called actions can be executed at transitions or when entering or
leaving a state. Views are attached to states and the state-charts
are illustrated with the ’live’ views. All elements, such as wid-
gets, views, speech dialog components are described by proper-
ties. These can be globally visible or private. It is possible to use
multiple state machines that can be synchronised, e.g. for driving
multiple displays or a display and speech dialog.

2.1. Architecture

In our architecture the HMI is completely separated from the ap-
plications, meaning that there is no direct connection between the
two. The communication is realised by use of a data pool. All
data that is relevant to the HMI, i.e. data that needs to be displayed
or output to the user is held in the data pool. Figure 1 shows a
schematic view of the tresos GUIDE architecture. Different com-
ponents can access and/or modify the data in the data pool. This
architecture requires that the applications have an interface to the
data pool. A typical flow if the user presses a button or utters a
speech command is as follows: A command or button press will
usually trigger an event. If the user uttered *CD next track’, the
corresponding event will cause the HMI framework to call an ab-
stract interface to the application which will execute the command
and write the relevant data for the display (e.g. current track num-
ber and elapsed time) into the data pool. The HMI is notified that
values in the data pool changed and updates its view if the data
is relevant (if the user switched to the navigation context in the
meantime, the current CD track is not dispalyed).

September 17-21, Pittsburgh, Pennsylvania



INTERSPEECH 2006 — ICSLP

6. Update View

I

State—Machines, Display Manager

1. User Command

——

HMI

5. Read Data

Application Views, Widgets, ...

4. Notify

Data Pool

-

. Call Interface

%7!\)

Abstract Application Interface

Applications

3. Write Data

Drivers, OS, Hardware

Figure 1: Data Pool Architecture of tresos GUIDE

2.2. HMI Simulation

Since we work with a model of the HMI, we can directly simu-
late it. This means that we do not need to compile the project, but
changes made to a dialog can directly be simulated. This holds for
all modalities, since they are all part of the HMI model. We can
thus immediately get a feeling of how the HMI behaves. Usually
HMI developers need to have access to the working applications
before they can fully test the HMI. In our approach we can sim-
ulate all applications simply by manually writing application data
to the data pool. We can thus conduct user evaluations and us-
ability studies at very early design stages, as will be described in
section 5. Traditionally such studies can only be conducted when
large parts of the HMI and the system already exist.

3. Speech Dialog Specification

Just like views are attached to states in the GUI state machine
(SM), we attach so-called speech dialog (SD) components to the
states of the speech SM. An SD component holds all prompts
and/or commands (specified as words or grammar rules) that are
valid in this state. In most of the cases one SD component di-
rectly corresponds to one state in the speech dialog. However, it is
also possible to use the same SD component at different states. A
special speech dialog editor is used to specify all commands and
prompts. These are treated as properties that are kept in the data
pool. The dialog designer can furthermore specify whether cer-
tain ’global’ commands are inherited from states further up in the
state hierarchy. Doing this we can avoid that re-curring commands
have to be specified over and over again. Like all properties in
the HMLI, also the command and prompt properties can be defined
to be language-dependent. While the dialog flow is defined using
concepts such as e.g. DIAL_TEL_NUM, the wording for the dif-
ferent languages is kept separately. All language-dependent prop-
erties can be exported for translation and imported back into the
system. The system can thus immediately be simulated in differ-
ent languages (if the dialog flow itself remains unchanged for the
different languages).

1775

¥ Naw_History

Figure 3: State Machine for the Speech Dialog

3.1. Speech Dialog State Machines

Similar to the GUI specification we use state machines to spec-
ify the speech dialog flow. This is in contrast to many traditional
approaches of industrial systems that use finite state machines for
the dialog manager but the complete specification of the speech di-
alogs is done using flow-charts (This specification very often needs
to be manually converted into a machine-readable dialog descrip-
tion for the dialog manager). While a speech dialog flow can be
captured quite well in flow-charts, it is usually difficult to synchro-
nise this with other components of the HMI and to integrate all
details that are needed for testing the target system. In flow-charts
references to other modalities or the GUI are usually included in
plain text such as "HMI returns list of CDs inserted’. Such a tex-
tual description is difficult to automatically translate into the final
overall HMI implementation or into test cases and it is difficult to
automatically generate source code for the target platform. In our
architecture we have direct access to e.g. the list of CDs inserted,
because such information is kept in the data pool where the speech
dialog can access it. We can directly model the actions of writ-
ing and reading the list of the CDs to/from the data pool and can
thus also directly simulate it and generate target code accordingly.
By fully specifying the behaviour of the HMI in the model, we di-
rectly have all information available that we need for testing. The
system we described in [1] was using one state machine to model
the GUI as well as the speech dialog. While this has the advan-
tage that graphics and speech dialog are inherently synchronous,
the drawback is that only simple dialogs can be modelled that ba-
sically allow users to speak what they see on the screen. If more



INTERSPEECH 2006 — ICSLP

elaborate speech dialog flows are to be modelled they might have
flows that are different from the GUI. The destination entry in a
navigation system might serve as an example here. The GUI will
be showing the same screen while in the speech dialog many dif-
ferent steps are modelled that allow the user to enter city, street,
etc. including all kinds of help and error messages. For such kind
of complex dialogs it is beneficial to model the speech dialog in a
separate SM. As a consequence the tool was recently extended to
support multiple SMs. Figure 2 and 3 show two state machines,
the first one representing the dialog flow of the GUI, the second
one representing the speech dialog flow. The states in the two
SMs have different shapes. While the rectangular-shaped states
in the GUI represent ‘normal’ states, the ones in the speech SM
represent special speech dialog states that can either include one
or several prompts or different vocabularies/grammars for speech
recognition or both. Furthermore the GUI SM is illustrated by the
’live’ screens that will be visible in the later target system while
the speech SM is illustrated by the set of commands and prompts
belonging to the different states. In order to synchronise the two
SMs, events can be sent from one SM to the other, causing e.g. the
GUI SM to change the screen. Furthermore actions can be mod-
elled at transitions or when entering or leaving a state. An action
could be to send an interface call, fire an event or set a value in the
data pool. Additionally, complex conditions can be modelled.

3.2. Grammar Specification

The speech dialog designer can specify valid commands in terms
of grammars for each SD component. The grammar format that we
use is the ABNF version of SRGS (Speech Recognition Grammar
Specification) [2] format. The designer can specify different rules
and sub-rules. All rules that are specified in one SD component
are compiled together at run-time to either build one grammar or
separate grammar rules for each state. Itis also possible to use con-
ditions to activate certain grammar rules depending on the actual
system context (such as ’navigation commands are only active in
radio mode if the route guidance is running in the background’). In
the future it may also be possible to use statistical language mod-
els, if more natural speech dialogs are to be specified. The designer
can also use semantic tags within the grammar. Here we use SISR
(Semantic Interpretation for Speech Recognition) [3]. Depending
on the actual speech recogniser that is connected for the simulation
the grammars are converted into the appropriate format.

3.3. Dynamic vocabularies

The designer can also specify dynamic vocabularies by referring
to the data pool. He can e.g. refer to the list of radio stations that
can currently be received, an information that might change fre-
quently. Whenever the user wants to change the radio station and
enters the corresponding dialog state, the list is read from the data
pool and added to the current recogniser vocabulary. In the same
way, dynamic information can be used for output prompts by re-
ferring to the data pool to generate e.g. something like ’Did you
say Hamburg? where "Hamburg’ is stored in the data pool as the
most recently recognised city.

4. User Modelling

Typically in speech dialog systems there is the necessity to treat
different types of users differently. For users who are very inex-
perienced with speech dialog systems explanations become neces-
sary to tell them which kind of interaction is possible in the differ-

1776

ent dialog states. For experienced users of the system such lengthy
explanations might soon be annoying and should be avoided. In
the above case the difference in the beginner and expert user only
consists in the type of output prompts and possibly also the avail-
able commands that are given or accepted in the different dialog
states. However, it might also be possible that we want to provide
completely different dialog flows to different users. Still, no matter
if only the commands and prompts or also the dialog flow should
differ, this typically has to be taken into account during each in-
teraction. Defining different strategies at each interaction step dur-
ing speech dialog design can become a quite tedious task, so the
speech dialog editor offers a special plug-in for user modelling.
By default three different types of users are defined: beginner, ad-
vanced and expert users. New user types can be generated. The di-
alog developer can then define which prompts and commands are
valid for the different user types, so that e.g. very short prompts
can be used for expert users and longer explanations for beginners
or special states with only one user command and prompts that can
only be accessed by this particular user type. Moreover, it is pos-
sible to show the dialog flows for all user types at the same time
or only the one for one user; this gives a clear visual idea of the
differences between one user type and the others.

4.1. User-Specific Dialog Strategies

Further adaptations for different user types can be made concern-
ing dialog strategies. Depending on the settings, different dialog
templates (i.e. *mini-dialogs’ including several states and transi-
tions) can be applied. Figure 4 shows an example of such a tem-
plate for entering a navigation dialog. Each state is described by its
name and can include a prompt (first arrow-shaped box) and a set
of commands (second, table-like box). In this example the dialog
starts with the left state. Expert users, after the welcome message
(’Hello, welcome...”), can give the command (’go to navigation’)
to go directly go the bottom state on the right where the destination
can be entered. The upper state on the right is not used (prompt
and command boxes are empty). The beginner dialog, cf. Figure 5,
uses the same template. Here, after the welcome message, the user
cannot give any command (command box of first state is empty),
but the system goes to the upper right state first to play additional
help prompts before going to the lower state on the right where the
user has finally the possibility to utter *go to navigation’ to go to
the destination entry. Different parameters exist for adapting the
dialog strategy. For each user it can be defined whether the dialog
should be more system-driven (system-initiative), or user-driven
(user-initiative), or mixed (mixed-initiative). For each initiative
some specific actions can be defined, e.g. what should happen af-
ter a certain user type specific timeout has passed. The system
could e.g. either go back to the beginning of the dialog, wait for
the user input or recommend the next action. There are more than
ten possible specific actions to be defined. For example the dialog
designer can also specify how the system should treat interrup-
tions or barge-in. Barge-in can either be ignored, the system can
add the new command (from the barge-in utterance) to the current
one and execute first the original, then the new command or the
system can directly switch to the new task. It can be furthermore
defined how the confirmation strategy looks like for that type of
user, i.e. whether to confirm it explicitly or implicitly or not at
all. Additional parameters are how to solve understanding errors,
to cancel a task, to undo the changes, etc. A user type has to be
homogeneous, but there are some details that depend as much on
the current task as on the user type, e.g. how long the system must



INTERSPEECH 2006 — ICSLP

no ¢ommand,

Meuer Zustand 2

Meuer Zustand

Hello, welcome {o the system.
Goto navigation

)

Navigation

( ‘ .

Wavigation Meuer Zustand 4

You are in the navigation system

Figure 4: Example for a template for an expert user

no command

|NeuerZu51anu 2

Meuer Zustand ‘ You can say navigation, cd or settings.

Hellg, welcome ta the system.

cD
Mavigation
Settings

cD
Mavigation
Settings

/3
Navigation

(

Navigation

‘NeuerZustanu 4

| You are in the navigation system

Figure 5: Example for a template for a beginner

wait if the user is not responding. A situation like that can ei-
ther depend on the user experience or on the critical time of the
task. These details will not only be related to a user but also to the
current prompt or command. All user modelling module function-
alities are described in detail in [4].

5. Usability Testing

As mentioned in section 2.2, the problem often arises that the sys-
tem needs to be in a development state where most of the function-
ality is actually working properly before any kind of user evalua-
tion can take place. However, if this evaluation reveals any prob-
lems that would require major changes to the system, this can often
not be taken into account anymore because the system is too ad-
vanced already. To overcome this problem, we use the simulation
capabilities of our modelling tool to conduct usability studies at
very early design stages. That means the infotainment system is
completely modelled and simulated for the tests. If the HMI is
intended for an automotive application, one should take into ac-
count that controlling the HMI is not the primary task of the user
but the secondary one. In order to simulate also this, we use the
Lance Change Task (LCT) designed by Mattes [S]. The LCT is
a PC-based driving simulation that measures the influence of a
secondary task (in our case controlling a simulated infotainment
system). The task comprises certain lane change manoeuvres that
are indicated on traffic signs along the road. Between the signs the
user has to keep the lane. The reaction of the users (when they are

1777

supposed to change lane) and how well they keep the lane can be
measured. The results can be compared to a driving task without
any secondary task and can thus give some insight into how much
the secondary task distracts the drivers from their main task. Ad-
ditionally, using the LCT as primary task creates a more realistic
environment for testing the infotainment system, because the user
cannot fully concentrate on the system but has to pay attention to
the primary task, which results in e.g. hesitations and errors that
would not occur if we only tested the infotainment system in iso-
lation. The dialog flow in the HMI simulation can be recorded and
evaluated later concerning errors in the dialog flow, speech recog-
nition or the user input. This together with appropriately designed
questionnaires the users have to fill after the usability test form a
solid basis to evaluate HMIs in terms of usability. Of course errors
in the HMI model itself (such as missing transitions, or transitions
to states that no longer exist and the like) can also be detected. The
detection of these kinds of errors usually doesn’t require real user
tests but can be performed automatically by model checkers.

6. Conclusions

In this paper we presented how speech dialogs are specified in our
HMI modelling tool tresos GUIDE. The tool allows the integrated
development of multimodal HMIs, thus ensuring consistency be-
tween the modalities. Although this joint development of multi-
ple modalities is a big advantage, it is also possible to develop
GUI-only or speech-only interfaces. We specify speech dialogs
using finite state machines which is in contrast to the traditional
approaches that use finite state-based dialog managers but flow-
charts for specifying the speech dialog flow. Using the state ma-
chine concept allows us to directly simulate the multimodal HMIs
without the need to connect real applications. As a consequence
we can conduct usability studies at very early design phases. Our
modelling tool is well suited for research as well as for produc-
tion, because it allows rapid prototyping and simulation of new
concepts as well as a complete specification of an industrial HMI
up to automatic code generation for the target platform. The de-
velopment of the tool is still being continued; future extensions of
the speech dialog editor will include the support for using statis-
tical language models and the possibility to specify frame-based
dialogs. Of course also methods for mutual diambiguiation, for
which approaches exist, need to be integrated into our tool.

7. References

Goronzy, S. and Beringer, N., Integrated Development and
On-the-Fly Simulation of Multimodal Dialogs, Interspeech
2005, Lisbon, Portugal.

Speech Recognition Grammar Specification, http://www.
w3.org/TR/2004/REC-speech-grammar-20040316

Semantic Interpretation for Speech Recognition, http://www.
w3.0rg/TR/2006/CR-semantic-interpretation-20060111

Mochales R., Design, Specification and Implementation of
Natural Dialog Strategies for a Personalised User in tre-
sos GUIDE+SPEECH, Master Thesis, Universitat Polytech-
nica de Catalunya (UPC), 2006.

Mattes S., The lane-change-task as a tool for driver
distraction evaluation, Annual Spring Conference of the
GfA/17th Annual Conference of the International-Society-
for-Occupational-Ergonomics-and-Safety (ISOES), 2003

(1]

(2]

(3]

(4]

(5]



	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Nicole Beringer
	------------------------------

