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Abstract
In this work we propose a procedure model for rapid automatic
strategy learning in multimodal dialogs. Our approach is tailored
for typical task-oriented human-robot dialog interactions, with no
prior knowledge about the expected user and system dynamics be-
ing present. For such scenarios, we propose the use of stochastic
dialog simulation for strategy learning, where the user and sys-
tem error models are solely trained through the initial execution
of an inexpensive Wizard-of-Oz experiment. We argue that for
the addressed dialogs, already a small data corpus combined with
a low-conditioned simulation model facilitates learning of strong
and complex dialog strategies. To validate our overall approach,
we empirically show the supremacy of the learned strategy over a
hand-crafted strategy for a concrete human-robot dialog scenario.
To the authors’ knowledge, this work is the first to perform strategy
learning from multimodal dialog simulation.
Index Terms: strategy learning, multimodal human-robot dialogs

1. Introduction
Without any doubt, the dialog strategy and its design plays a cru-
cial role for the quality of any dialog system. Considering the
presence of uncertainty about the user dynamics as well as error-
prone system components, the dialog manager’s decisions - e.g.
which question to ask, initiative to use, or information to con-
firm - are multifaceted and non-trivial. While handcrafting dialog
strategies becomes a tedious and non-trivial affair with an increas-
ing complexity of the dialog system, machine learning techniques,
and therein particularly reinforcement learning (RL), have become
popular for automatic dialog strategy acquisition. Thereto, the dia-
log scenario is mapped to the formalism of a Markov Decision Pro-
cess (MDP) [1]. The application of RL algorithms then promises
the computation of high-quality, at best optimal dialog strategies.

The pitfall coming along with the application of RL algorithms
is their necessity of huge amount of dialog experience to learn the
optimal dialog strategy. A popular way to obtain such extent of
experience is its artificial generation using dialog simulation (per-
formed e.g. in [2]). So far, the majority of proposed approaches
to simulation-driven strategy learning have been exclusively appli-
cable to big-scale dialog systems as their application assume the
presence of extensive online-operation experience for training the
simulation model. Also all previous approaches have been isolated
to speech-only, mostly telephone-based dialogs.

This work carries on the idea of dialog strategy learning to
multimodal dialog interactions, hereby particularly focusing on
human-robot interactions. We argue that typical human-robot di-
alog scenarios usually involve the settlement of a task execution
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Figure 1: Procedure model in a step by step manner

he robot and thereby usually the overall dialog complexity is
ricted. Tailored for such interactions, our procedural model
oses training of a simulation model based on a small-sized

og corpus collected by an initial execution of a Wizard-of-Oz
z) experiment. Combined with our propagated design of the
model, the system error models, as well as the MDP’s re-

d function and state space, we claim that for the addressed di-
s such trained simulation model facilitates generation of arti-
l dialog interactions which are sufficiently accurate to allow
ning of powerful strategies. Hereby, we swerve from earlier
k within the domain of strategy learning mainly in three points:
(i) facilitate strategy learning already during system develop-
t (ii) propagate simulation training on a slim training set (iii)

oduce multimodality to strategy learning. We validate our ap-
ch for a concrete human-robot dialog scenario by showing the

remacy of the learned strategy over a handcrafted strategy not
in the simulation environment, but more importantly also in

real world domain.

2. Our approach
re 1 illustrates our proposed procedure model in a step-by-
manner. In the following, we will conceptually introduce its

different phases. Recall that our design decisions hereby are
ays targeted to facilitate a rapid strategy learning process, while
addressing multimodality as well as the peculiarities of typical
an-robot dialog interactions.

Step 1: Perform Wizard-of-Oz experiment

propose the execution of an WOz experiment as a first step
in the strategy learning process. In WOz experiments the sys-
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tem’s functionality is simulated to a certain extent by a hidden
human wizard, whereas the test subjects are left in the belief of
interacting with a finalized system. As a valuable addition, WOz
experiments can also be used to obtain direct feedback from the
test subjects about the system. The execution of Wizard-of-Oz
(WOz) experiments within the domain of strategy learning has
been proposed earlier, e.g. by Williams et al. [3] to support the
MDP design. We promote the utilization of the collected WOz di-
alog corpus as followed: (i) training of the dialog simulation (user
model and the system error models) (ii) domain-specific porting
and tuning of the system’s language model (iii) collection of user
feedback for its incorporation in the MDP’s reward function.

2.2. Step 2: Train dialog simulation

While in some cases there might be options to adapt task-
independent data for simulation training, we exclude such possibil-
ity in this work. Instead, we consider our WOz experiment as sole
data source. By using simplistic and low-conditioned statistical
methods for user and error modeling, we successfully challenge
data sparsity.

2.2.1. User model

For the user simulation we adapt a bi-gram model approach where
the user action is solely conditioned on the last system action.

p = P (actionuser|actionsystem)

With respect to earlier proposed and more sophisticated user mod-
els (e.g. the Levin model [1]), we prefer the bi-gram user model
due to its simplicity which allows us to uniformly and easily model
multimodality of user actions, responses to mixed- and system-
initiative actions as well as multiplicity of user actions. Note, that
the quality of the bi-gram model is highly dependent on the defined
abstraction granularity of simulated user actions. Within our con-
crete setup, we define a particular user action for the modality of
speech on intentional level as the utterance of a semantic concept
(SC). For the modality of gesture, a simulated action is represented
by the user’s execution of a 3D pointing gesture towards a partic-
ular point of interest. Generally, we assume that the user is always
acting fully cooperative and goal-directed, i.e. he always only pro-
vides correct information and is motivated of fulfilling an initially
fixed goal as quickly as possible.

2.2.2. ASR error model

For our applied ASR error model we adopt and extend an ap-
proach proposed by Pietquin [4] which specifies recognition prob-
abilities for a finite set of recognition tasks. Especially for slot-
based human-robot dialogs such ASR error model can be rapidly
designed. Hereby, we simply define the recognition of the seman-
tic concept of each crucial piece of information within the dialog
interaction - usually represented by the information slots - as indi-
vidual recognition task.

As we do not restrict our language model for particular system
prompts as Pietquin, in addition to the recognition rate of a recog-
nition task we train probabilities expressing how often confusions
appear inside (In-Domain) or outside (Out-Domain) the same se-
mantic class of the recognition task. Note that such three defined
probability values not necessarily have to accumulate to one. In-
stead, the potential missing probability fractions model recogni-
tion errors where the utterance of a semantic concept is completely
lost.
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A further aspect by which we extend the ASR model proposed
ietquin is the modeling of talker-dependent recognition per-
ance variations. We claim that divergences e.g. in language

ability, pronunciation clarity or input device adjustment (e.g.
er setup of head-mounted microphone) of different speak-

cause significant deviations in recognition performance, which
uld not be ignored in dialog simulation. In order to model

phenomena, we measure the standard deviation of recogni-
rates (RR) (σRR(SC)) for each defined recognition task (RT)

r all test subjects. Within the simulation, we then compute the
gnition rate for each recognition task individually for every

ulated dialog as follows:

SimRun(RT ) = Sample(N(0, 1))∗σRR(RT ) +RROverall(RT )

using the same sample value for the computation of each
(RT ) within a simulation run, we create a more consistent

simulation: in case a high value was drawn from the normal
ribution, speech recognition in the particular simulated dialog
ks comparable well for all recognition tasks. For a low sample
e the effect is correspondingly contrary.

3. Multimodal error models

eneral we propose that each single modality processing unit
uld be represented by an own dedicated error model within the
og simulation framework. However, due to the different char-
ristics and recognition mechanisms of imaginable modalities
. gaze, pointing gestures, face expressions etc.), it is impossi-
to provide a generic approach for error modeling fitting each
ality. For our concrete experiment presented in chapter 3, we
exemplarily present an error model for the recognition of 3D
ting gestures.

Step 3: Define MDP

adequate state space design is a crucial point for any rein-
ement learning algorithm. Hereby, the exponential growth of
state space with every additional state feature requires a well-
ght selection and encoding of such features. Yet, using dia-
simulation facilitates the generation of a theoretically infinite
unt of dialog interactions. Thereby, a relative rich state space
gn is not a major concern, but instead presumably facilitates
ning of more complex and successful strategies. Within our
edure model, we explicitly encourage the use of an extensive

e space, within the limit of a reasonable computation duration
he the learning process. Particularly interesting within the dy-
ic environment of human-robot dialogs, we also recognize the
ty of state features to facilitate the system’s intelligent adapta-
to changes of the recognition conditions for different modal-
within or between dialog interactions. As one example of a

ure facilitating such adaptation, within our experiment a state
ure is established which identifies if the recognition of pointing
ures is available or not within a particular dialog state (correct
ure recognition requires correct tracking of the user’s hands
head).

A second essential key design issue within the MDP setup is
reward function. Next to the obvious evaluation criteria of suc-

and length of the dialog, an additional optimization criterion
apply is dialog naturalness. While a system developer might
orced to allow potentially unnatural system behavior in order
void deadlocks, the reward function can be designed in a way



to punish and avoid such behavior. However, representing the sub-
jective criterion of naturalness within a numerical reward function
is a non-trivial task. We propose the WOz experiment as an ad-
equate scenario to collect user feedback about the naturalness of
the system which subsequently can be incorporated within the re-
ward function. Our experiment will provide an example for such
an approach.

2.4. Step 4 and 5: Learn and deploy strategy

For these two steps we do not significantly swerve from other
work. It should be noticed that we use the popular Watkins(λ)
method for strategy learning.

2.5. Step 6: Retrain simulation

The final step six is an essential part of our approach. If further
strategy improvement is desired or changes to the experiment’s
environmental conditions occurred, we propose the use of tran-
scribed online-operation data to retrain the simulation model in
order to subsequently learn an improved strategy from the refined
simulation environment. We believe that such an approach is su-
perior to performing online-learning out of the following reasons:
(i) Efficient online-learning requires a small and fixed state space,
while simulation-based strategy (re)learning allows alterations to
the state space at any time as well as the use of a richer set of state
features. (ii) Online-learning requires immediate knowledge if a
dialog interaction ended successfully or not. Unlike in the simu-
lation, it is non-trivial to derive this information securely online
without supervision. (iii) In contrast to our simulation-based ap-
proach, online-learning requires a continuous exploration in the
live experiment which has a negative effect on the system’s online
performance as well as the user’s amenity.

3. Experimental setup

The exemplary human-robot dialog interaction is installed within
the context of the collaborative research center SFB588 at the Uni-
versity of Karlsruhe, developing cooperative and multimodal hu-
manoid robots. In our particular scenario, our robot acts in the role
of an early-stage bartender. Twenty objects, diverging in color,
shape and location are placed on a table in front of the robot and
represent the user’s order options. Before each dialog, our test
subjects silently choose a particular item of interest from the table
setting. Our robot then initiates a multimodal dialog with the goal
to identify the user’s object of interest and serve the correspond-
ing item. The robot’s dialog capabilities are mainly represented by
its speech and gesture recognition system. Detailed information
about the system’s conversational interface can be found in [5].

Figure 2: Experiment setup Figure 3: Dialog automaton
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The dialog structure

re 3 shows the dialog automaton of our experiment. Our robot
ays initiates the dialog with a self-introduction and the mixed-
ative action "What can I serve you?". Afterwards the robot has
option to prompt for the three available information slots: ob-
type, object color and object location. For the case of object
tion, our robot prompts explicitly for a pointing gesture of the
towards the desired item. Further options exist in confirm-

information slots either individually or jointly. At any point
in the dialog, the robot is able to confirm/exclude the so far
matching item as desired item or respectively end the dialog

serve such item. As a general constraint we restricted the num-
of dialog turns to a maximum of ten.

Wizard-of-Oz experiment

hin our Wizard-of-Oz experiment 15 test subjects were en-
ed and a total of 82 dialogs (314 utterances) were completed.
human wizard performed the function of speech and gesture
gnition, as well as carried out the dialog strategy during run-
. We interviewed all test subjects after task completion about
naturalness of the system. Many test subjects perceived the
ct repetition of system actions as well as a second prompt for
same information slot (e.g. in case of recognition gaps) as par-
larly unnatural. We incorporated such feedback in the reward
tion of our reinforcement algorithm as we will introduce later.

Building the simulation

simulation of our dialog scenario comprises three models: the
model, the ASR error model and the gesture recognition error
el. Table 1 shows three exemplary entries of the user model
ed on the WOz corpus using the bi-gram model introduced

ier. Table 2 shows the indicated recognition tasks and trained
error model parameters for close-speech communication.

Action Type Color Gesture Confirm

Greeting 67/82 82% 51/82 62% 21/82 26% —

AskType 30/35 86% 2/35 6% 1/35 3% —

nfColor 0/62 0% 1/62 2% 0/62 0% 62/62 100%

Table 1: Trained user model using a bi-gram approach

mantic Correct In-Domain Out-Domain Standard
oncept Recognition Confusion Confusion Deviation

Type 72/99 72.7% 1/99 1.0% 8/99 8.1% 0.12

Color 69/92 75.0% 2/92 2.2% 12/92 13.0% 0.18

onfirm 219/250 87.6% 4/250 1.6% 5/250 2.0% 0.12

Table 2: Close-speech ASR error model

For the gesture tracker error model, we configured and trained
model on pointing gestures recorded during the WOz experi-
t, using three parameters: the average error angle (21.1) , its
dard deviation (4.54) and the recall rate (79.5%). Within the
ulation process, a draw from the recall rate determines if a sim-
ed user gesture is detected and if so, an error angle drawn from
rmal distribution (based on the average error angle and its de-
ion) is added to the assumed perfect direction vector of the
ure.



3.4. MDP design

Within our MDP design we defined eight actions, derivable by the
earlier dialog description. Furthermore, we used the following
eight state features F1 to F8:

[F1-F3] Status of information slots object type, color and
position (0:empty & never asked, 1:empty & already asked,
2:filled, 3:confirmed)
[F4] Number of candidates given the current slot information
(0:no candidates, 1:one candidate, 2: two to four candidates, 3:
more than four candidates)
[F5] Speech condition (0:close speech, 1:distant speech)
[F6] ASR history (0: bad, 1: good) - the history is set too bad
if no speech input was understood for a system action or the
confirmation of an information slot was declined
[F7] Gesture tracking condition (0:bad, 1:good) - condition was
determined by observing the component’s internal state (e.g.
hands of test subject not traceable -> set condition to bad)
[F8] Last system action

The design of our reward function was intended to facilitate
the optimization of the dialog strategy towards the criteria length,
success and naturalness. In order to motivate short dialogs,
every system action was penalized with a reward of -0.2. An
unsuccessful dialog - i.e. the robot served the wrong item - was
heavily punished with a reward of -5, a successful finish rewarded
by +1.0. Integrating the user feedback from the WOz experiment,
we additionally penalized the second prompt for an information
slot as well as the direct repetition of the same system action also
by a value of -0.2.

3.5. Experimental validation

In order to empirically validate the benefit of our overall approach,
we compared the performance of our learned strategy with a hand-
crafted and rule-based baseline strategy for the simulation and real
world domain. The designed baseline strategy proceeds in a way
that it first collects and jointly confirms the object type and color
information, before asking once for a user gesture. Thereafter, the
robot explicitly tries to confirm the best matching item within the
candidate collection, until the referenced item is confirmed as cor-
rect by the user. As a general rule the dialog is ended as soon as
only one candidate item remains. 18 test subjects engaged within
the validation experiment of which only one test subject also par-
ticipated within the WOz experiment. A total of 94 dialogs (576
utterances) were collected in sequential runs of four to six dialogs
of each test subject. Hereby, in order to fairly balance a potential
learning effect of the user, we evenly switched between use of the
two strategies.

4. Results
Table 3 shows the results of the comparison of the performance of
our learned strategy to the introduced handcrafted baseline strat-
egy. As we can see, our learned strategy performs significantly su-
perior to the handcrafted strategy, not only in the simulation (SIM)
but also in the real world (REAL) with respect to the central opti-
mization criterion of collected reward, the task completion rate as
well as dialog brevity.

As a further positive aspect, despite the small corpus of col-
lected real dialog interactions, the strategies’ performance figures
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mble nicely for the simulation and real world domain and
eby indicate an adequate accuracy of our simulation model.

Baseline Strategy RL Strategy
REAL SIM REAL SIM

Dialogs 47 105 47 105

Task completion 80,4% 83.3% 86.9% 91.3%

∅ Utterances 5.924 5.956 4.943 5.007

∅ Reward -1.252 -1.067 -0.782 -0.688

Table 3: Comparison baseline to learned strategy

After the validation experiment, we also retrained our simula-
framework based on the 94 collected and transcribed online-

ration dialogs. We could observe that the newly learned opti-
strategy changed insignificantly to the one learned from the
z corpus: only in 2.7% of the states the computed optimal ac-
diverged for both strategies. Such observation shows that the
ormed WOz experiment represented a valid data source for the
ulation training, but also indicates a moderate stability of the
mal learned strategy, reachable already by a small simulation
ing corpus.

5. Conclusions
his paper we introduced a holistic procedure model for rapid
ning of multimodal dialog strategies within human-robot in-
ctions. We empirically validated that despite the use of a
ll training corpus and low-conditioned simulation model our
roach is capable of learning dialog strategies which signifi-
tly outperform typical handcrafted strategies. In contrast to
ier work, our approach represents an efficient and inexpensive
eeding to automatic dialog strategy learning during system de-
pment. Future work will have to show how well our approach
be applied to dialog scenarios with a more extensive informa-
space as well as additional modalities other than speech and
ting gestures.
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