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Abstract

We present a method that analyzes a two-dimensional magnitude
spectrogram S(f, t) into its local constituent spectro-temporal am-
plitudes A(f, t), frequencies F (f, t), orientations Θ(f, t), and
phases φ(f, t). The method operates by performing a two-
dimensional local Gabor-like analysis of the spectrogram, retain-
ing only the parameters of the 2D-Gabor filter with maximal am-
plitude response within the local region. We demonstrate the tech-
nique over a wide variety of speakers, and show how the spec-
trograms in each case may be adequately reconstructed using the
parameters of the Max-Gabor analysis. Finally, we discuss the na-
ture of the extracted Max-Gabor parameters.
Index Terms: spectrogram analysis, spectrogram reconstruc-
tion, two-dimensional Gabor, spectro-temporal frequency, spectro-
temporal orientation.

1. Introduction
We observe that within small local two-dimensional patches p in
a narrowband magnitude spectrogram S(f, t) there is usually only
one locally dominant spectro-temporal frequency F (p) and orien-
tation Θ(p). Shown in Figure 1 are several patches A, B, and E
which exhibit this local spectro-temporal behavior for a speaker
uttering ‘‘Hi Jane’’. Secondly, we observe that these locally
dominant spectro-temporal frequencies and orientations change
smoothly in time and frequency. Finally, we observe that there
are patches for which this assumption is violated, such as patch F
in Figure 1.

Based on these observations, our goal in this work is to present
a method which analyzes a magnitude spectrogram S(f, t) into its
locally dominant spectro-temporal frequencies F (f, t) and orien-
tations Θ(f, t). Our method also estimates local patch amplitudes
A(f, t) and phases Φ(f, t) as well. Finally, our method adequately
reconstructs the analyzed spectrograms from the extracted param-
eters. Since the local patches are Gabor-like, the method we per-
forms a two-dimensional Gabor-like analysis of the spectrogram,
retaining only the parameters of the 2D-Gabor filter with maxi-
mal amplitude response within the local region. Hence we call our
technique a Max-Gabor analysis of spectrograms.

Our hope in performing such an analysis is to factor out var-
ious important phenomena occurring during speech. In particu-
lar, local Gabor amplitude should relate to formant energies dur-
ing speech, while local spectro-temporal frequency and orienta-
tion should relate to pitch and the underlying pitch changes during
speech. At the same time, we hope that the parameters extracted
by this representation summarize the spectrogram in a smooth and
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re 1: A magnitude spectrogram of ‘‘Hi Jane’’ (vertical
is low frequency to high frequency). Patches A,B,E exhibit

r locally dominant spectro-temporal frequencies and orienta-
s. Patch F violates this assumption, while patches C,D are
ewhere in between.

ul way, and would be useful for further processing in applica-
s such as speech recognition and speech synthesis.

2. Background
Max-Gabor analysis is inspired by the work of Shamma and

eagues [1] [2], who have developed a two-stage auditory model
d on psycho-acoustical and neurophysiological findings in the

y and central stages of the auditory pathway.
The first stage of their approach converts a sound into an au-
ry spectrogram, which is similar in nature to a regular mag-
de spectrogram. The second stage analyzes local patches of
auditory spectrogram using a filterbank of two-dimensional lo-
spectro-temporal filters that are selective to different frequency
es Ω and to different temporal rates ω. Thus, for each point
) in the spectrogram, the Shamma model produces a two-
ensional output Rij(Ω, ω) that is the response of the entire
rbank for that location. Typical values for the dimensionality

and ω are 6 and 26 respectively [2].
In our work we also examine the content of local spectro-
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temporal patches of the spectrogram using an analogous re-
sponse function Rij(Ω, ω). However, unlike the Shamma model,
we choose to keep only the maximum output response value
maxΩ,ω(Rij(Ω, ω)), as well as the parameters of the filter which
produced the maximum value: argmaxΩ,ω(Rij(Ω, ω)). In so do-
ing, we are using our assumption that, within a local patch, there
is only one dominant local frequency and orientation, and conse-
quently the entire filterbank Rij(Ω, ω) may be compressed to the
parameters of one meaningful Gabor filter.

The usage of a MAX operator as the mechanism to select the
dominant local frequency and orientation is itself motivated by re-
cent work in visual neuroscience [3], where it was embedded in
a hierarchical mechanism for visual object recognition in order to
account for visual translation- and scale-invariance. Additionally,
a MAX operator was also used in texture analysis [4], where it was
used to extract dominant local texture parameters for the purpose
of texture segmentation.

3. Max-Gabor Analysis
3.1. Overview

Our MAX-Gabor algorithm is modelled after recent fingerprint en-
hancement algorithms [5], where it is also necessary to analyze lo-
cal spectro-temporal frequencies and orientations. Shown in Fig-
ure 2 is a schematic of the various stages of our algorithm, which
we discuss in detail below.

3.2. 2D Gabor Definition

We define a 2D Gabor G(f, t) with spectro-temporal frequency F ,
spectro-temporal orientation Θ, amplitude A, and phase Φ as:

G(f, t) = A · W (f, t) · cos(2πF x̂ + Φ) (1)

where
x̂ = tcosΘ + fsinΘ (2)

and W (f, t) is a Gaussian-like window (to be defined later). For
phase estimation, we will need the notion of a complex Gabor,
which will consist of real and imaginary versions of equation 1 in
quadrature phase:

G
∗(f, t) = A · W (f, t) · ej(2πF x̂+Φ) (3)

Finally, since magnitude spectrograms are nonnegative, we will
also need to rectify Gabors during reconstruction, so we will de-
note a rectified real Gabor as Ĝ(f, t).

3.3. 1D STFT

All of the utterances we consider are first STFT-analyzed using
a 25msec Hamming window with a 1ms frame rate and a ze-
ropadding factor of 4. This yields 1600-dimensional STFT frames,
which are truncated to 800 bins due to the symmetry of the Fourier
transform. We limit our analysis in this paper to the magnitude
spectrogram of each utterance, which we represent notationally as
S(f, t). Additionally, we limit our analysis to a linear frequency
axis, deferring logarithmic frequency analysis to future work.

3.4. 2D Local FFT

At every grid point (i, j), we extract a patch Pij(f, t) of the spec-
trogram of size df and width dt. First, the patch is multiplied by a
2D Hamming window WH(f, t) of the same size as the patch.
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re 2: Two example Max-Gabor analyses: First column depicts
ple input patches Pij(f, t). Second column depicts sample
tro-temporal spectra Rij(Ω, ω). Third column depicts esti-

ed Max-Gabor peaks {Ωmax, ωmax}. Fourth column depicts
nstructed Gabors Gij(f, t).

ond, a 2-dimensional Fourier transform of size NH × NW

erformed on the patch to produce the local spectral-temporal
nitude spectrum:

(Ω, ω) =

‚‚‚‚‚‚
X

f

X
t

WH(f, t)Pij(f, t)e
−j2π Ω

NH
f
e
−j2π ω

NW
t

‚‚‚‚‚‚
(4)

important to point out that 2D-FFT weighted by WH(f, t)
s the place of Shamma’s 2D Gabor analysis in our case.
The height df and width dt of the local patch are important

lysis parameters: they must be large enough to be able to re-
e the underlying local dominant frequency and orientation,
small enough so that the underlying signal is locally station-
Suitable parameter ranges are 10-20msec for the dt parame-

and 800Hz − 1.2Khz for the df parameter. Male speakers
ire window heights in the lower end of the df range, while fe-

e speakers require a window height in the higher end of the df
e.
Additional analysis parameters are the window hopsizes in
Δi and frequency Δj, as well as the FFT sizes NH and NW .

ically we set Δi to be 3-5ms and Δj to 50-100Hz, which cre-
overlap between the patches. NH and NW are each set to

.

Peak-Finding With Quadratic Interpolation

al inspection of the local spectro-temporal magnitude spec-
Rij(Ω, ω) for different window patches reveals that most of

spectra exhibit a Gabor-like spectral structure (see Figure 2).
s is exemplified by the presence of two Gaussian-like “bumps”
e spectrum whose location we wish to identify. Additionally,

C “bump” usually exists because the magnitude STFT is non-
ative, so local patches will have a nonzero average value.
We use a peak-finding strategy to obtain a set C of candi-
locations for the Gabor “bumps” in the spectral response

(Ω, ω). This set C is composed of the locations {Ωc, ωc} of
local peaks, as well as their corresponding values {Rc}. The
l peaks and their locations are first identified on the original
pling grid of Rij(Ω, ω), and then subsequently refined using
l quadratic interpolation.



Generally, the peak locations will come in conjugate pairs due
to the conjugate symmetry of the Fourier transform, so we match
the conjugate peak locations in C with each other into pairs. We
also remove the DC peak from the set C if it exists.

As a result, at the end of our peak-processing stage for each
patch, the set C will contain a set of candidate local maxima {Rc},
and their conjugate locations {Ωc, ωc}.

3.6. Locally Dominant Frequency and Orientation Estimation
Using MAX

We determine the locally dominant Gabor peak by choosing
among the peaks in the set C using a MAX operator:

Rmax = max
c

{Rc} (5)

This identifies the corresponding peak locations as

{Ωmax, ωmax} = {Ωc∗ , ωc∗} (6)

where
c
∗ = argmaxc {Rc} (7)

Finally, the locally dominant orientation and frequency may be
estimated from the chosen peak location as

Θ(i, j) = tan
−1

„
ΔΩmax

Δωmax

«
(8)

and

F (i, j) =

r“
ΔΩmax

NH

”2

+
“

Δωmax

NW

”2

2
(9)

where ΔΩmax and Δωmax refers to differences between the con-
jugate pair location coordinates. Shown in Figure 2 in the third
column are example peaks extracted by our algorithm.

3.7. Local Phase and Amplitude Estimation

Local phase Φ(i, j) is estimated for the patch under consideration
by first synthesizing a complex 2D Gabor signal G∗

ij(f, t) with
local frequency F (i, j), local orientation Θ(i, j), amplitude A =
1, phase Φ = 0, and window WH(f, t). The patch P (i, j) is then
projected onto the complex Gabor G∗

ij(f, t), and the phase value
determined from the resulting angle:

Φ(i, j) = angle

0
@X

f

X
t

WH(f, t)Pij(f, t)G∗

ij(f, t)

1
A (10)

Similarly, local amplitude is estimated for the patch under con-
sideration by first synthesizing a rectified real 2D Gabor signal
Ĝij(f, t) with local frequency F (i, j), local orientation Θ(i, j),
phase Φ(i, j), and amplitude A = 1. An optimal scaling factor
A(i, j) which scales the synthetic Gabor to to match the current
patch Pij under consideration is estimated as:

A(i, j) =

P
f

P
t WA(f, t)Pij(f, t)Ĝij(f, t)P
f

P
t W 2

A(f, t)P 2
ij(f, t)

(11)

For accurate amplitude estimation, we have found it necessary to
use an amplitude Hanning window WA(f, t) which is narrower
than the patch Hamming window WH(f, t). Typically, WA(f, t)
ranges in height from 200Hz-450Hz, and 1-5msec in width.
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Smoothing over Time and Frequency

re are many cases (such as patch F in Figure 1) when a
h has very little or no energy, and our peak-picking algorithm
s not find any local peaks in the spectro-temporal response
(Ω, ω). We handle this case by setting the frequency and ori-
tion for the current patch P (i, j) to be the same as those from
previous patch in time P (i − 1, j).
There are also cases when a patch (such as patch C in Figure
ontains a lot of noise-like energy, and the peak-finding algo-
m finds many spurious peaks which may throw off the local
uency and orientation estimation in Section 3.6. We handle
case by removing from the set C those candidate peaks whose
ntations and frequencies are significantly different from those
mated in the previous patches P (i−1, j) and P (i, j−1) in time
frequency. Two parameters, ΔFmax and ΔΘmax, determine
much patch-to-patch change in frequency and orientation we

willing to tolerate in our Max-Gabor analysis.

4. Max-Gabor Synthesis
en the estimated local frequencies F (i, j), orientations Θ(i, j),
litudes A(i, j), and phases Φ(i, j), the spectrogram Ŝ(f, t) is
nstructed by synthesizing local rectified 2D Gabors Ĝij(f, t)
window WA for each patch, and overlap-adding them to-

er:

Ŝ(f, t) =

P
i

P
j
Ĝij(f, t)P

i

P
j
WA(f, t)

(12)

5. Max-Gabor Results
analyzed and re-synthesized several test utterances of different
kers uttering the phrase ‘‘Hi Jane’’. Two examples of
results are shown in Figures 3 and 4 1.
The first through third plots in each pair of Figures shows the
spectrogram S(f, t), the reconstructed spectrogram Ŝ(f, t),
the reconstructed spectrogram Ŝ(f, t) smoothed with a

Hz-by-3msec 2D Gaussian filter (to scale the colormap for bet-
omparison with the first plot). Comparing the reconstructions
the original spectrograms reveals that our Max-Gabor analy-

faithfully captures the local frequency, orientation, and ampli-
of the original harmonics.

The fourth through seventh plots in each figure depict the lo-
amplitudes A(i, j), frequencies F (i, j), orientations Θ(i, j),
phases Φ(i, j) estimated by our Max-Gabor analysis. The lo-
amplitudes clearly capture the formant energy behavior in an
rance. The local frequency plots exhibit visible segmentation
distinct but smooth pitch regions (for example, as yellow and
regions in the 5th plot of Figure 3) Finally, the orientation

s depict distinct vertical orientation bands which represent un-
ying upward or downward pitch shifts. Dark blue bands reflect
nward pitch shifts, while yellow and red bands depict upward
h shifts.
Finally, in order to perform auditory comparisons, we synthe-
d time waveforms for both original and reconstructed magni-

spectrograms using sinusoidal analysis/synthesis techniques
Informal listening tests indicated that both were very simi-

See http://cuneus.ai.mit.edu:8000/research/maxgabor
ore results
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lar to each other, which suggests that the Max-Gabor technique is
successful at capturing the important aspects of the spectrogram.

6. Conclusions and Future Work

We presented a method that analyzes a two-dimensional mag-
nitude spectrogram S(f, t) into its locally dominant spectro-
temporal amplitudes A(f, t), frequencies F (f, t), orientations
Θ(f, t), and phases φ(f, t). In addition, we presented a method
that reconstructs a spectrogram from the extracted parameters.

The quality of our reconstructions suggests that assuming only
one dominant frequency and orientation within a local patch is in
fact a valid assumption, and represents a meaningful compression
of the filterbank outputs of [1].

Future work will consist of exploring the use of the extracted
parameters for applications such as speech recognition, compres-
sion, and synthesis.
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Figure 3: Top row, left to right: Original magnitude spectrogram S(f, t), reconstructed spectrogram Ŝ(f, t), reconstructed spectrogram
convolved with a small Gaussian filter Ŝ(f, t) ∗ WG(f, t) . Bottom row, left to right: A(i, j), F (i, j), Θ(i, j), and Φ(i, j).
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Figure 4: Top row, left to right: Original magnitude spectrogram S(f, t), reconstructed spectrogram Ŝ(f, t), reconstructed spectrogram
convolved with a small Gaussian filter Ŝ(f, t) ∗ WG(f, t) . Bottom row, left to right: A(i, j), F (i, j), Θ(i, j), and Φ(i, j).
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