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Abstract
The region-dependent transform (RDT) is a feature extrac-
tion method for speech recognition that employs the Minimum
Phoneme Error (MPE) criterion to optimize a set of feature trans-
forms, each concentrating on a region of the acoustic space. Pre-
vious results have shown that RDT gives significant recognition-
error reduction in a large vocabulary speaker-independent (SI) sys-
tem. As a follow-up investigation, this paper presents the re-
cent progress of applying RDT in speaker-adaptive training (SAT).
Similar to previous SI results, the integration of RDT with SAT
yields 7% relative improvement in word error rate (WER). Also,
theoretical comparisons are made between RDT and other discrim-
inative feature extraction methods, including the improved version
of the feature-space MPE (fMPE) that uses the “mean-offsets” as
additional input features.
Index Terms: speech recognition, discriminative training, feature
extraction, region-dependent transform.

1. Introduction
In speech recognition, the acoustic features are often extracted
from the cepstral coefficients using linear transforms, which can
be estimated using LDA[1], HLDA [2], or MLLT [3]. However,
the criteria of these methods do not correlate well with the recog-
nition errors, hence the features optimized under such criteria are
not optimal in terms of minimizing WER.

The discriminative region-dependent transform (RDT) is de-
veloped to overcome this problem by using the MPE [4] crite-
rion that is closely related to WER. In RDT, the acoustic space
is divided into multiple regions through a global Gaussian mix-
ture (GMM) model. Each region is asssociated with a distinct fea-
ture transform. In particular, we use the linear projection of long
span features as the regional transform. At run-time, given any
observation, the posterior probabilities of the Gaussians are used
to determine which region the observation belongs to, hence what
transform to apply. An advantage of RDT is that large number of
parameters and nonlinearity can be introduced without too much
computational cost.

RDT is related to several discriminative feature training meth-
ods. MMI-SPLICE [5] also uses the GMM to divide the acous-
tic space into regions, but it only has one bias vector associated
with each region as a correction term of existing features. This
scheme can be viewed as a special case of RDT. Feature-space
MPE (fMPE) [6] has a different origin from SPLICE, since it treats

† Bing Zhang is a Ph.D. student at the College of Computer & Infor-
mation Science, Northeastern University.

the
and
ject
that
trix
rear
whe
mea
to t
dev
form

sati
WE
the
the
orde
grat
of t
refe
a si

RD
part
SA-
with

The
met
Gau
mul
feat
ture

with
num
i gi
vec

uses
nati
is u

INTERSPEECH 2006 - ICSLP

1495
egion-dependent Transform for
xtraction

s, Richard Schwartz

gies
e, MA, 02138
rtz}@bbn.com

posteriors of the Gaussians in the GMM as candidate features,
uses a linear projection to reduce the dimensionality. The pro-
ed vectors are used as correction terms to existing features, so
the linear projection can be simply initialized with a zero ma-

. The core of fMPE is equivalent to SPLICE after mathematical
rangement [7]. An improvement to fMPE is introduced in [8],
re the differences between the original feature and Gaussian
ns, so-called mean-offsets, are treated as features in addition
he posteriors. It is interesting that the “mean-offset” fMPE,
eloped from a totally different perspective, can be written as a

of RDT. This will be analyzed in Section 2.
In our original paper [9], using RDT in the SI English Conver-

onal Telephone Speech (CTS) system offered about 6% relative
R reduction. Although it is possible to use the SI-RDT in SAT,
fear is that the ML-based speaker adaption may compromise
gain obtained from the discriminative feature optimization. In
r to solve this problem, we have developed a procedure to inte-
e RDT with SAT, where RDT is estimated under the presence
he speaker-dependent (SD) transforms. Using this procedure,
rred to as SA-RDT (speaker adaptive RDT), we have obtained
milar gain to that of the SI-RDT.
The paper is organized as follows. Section 2 gives a review of

T, as well as its relation to other methods. The experimental
is presented in section 3, where we show the procedure of

RDT, and summarize the results of both SI-RDT and SA-RDT
the English CTS systems.

2. Region-dependent Transform
region-dependent feature transform was introduced as a

hod for discriminative feature extraction [9]. It uses a global
ssian mixture model (GMM) to divide the acoustic space into
tiple regions, each having a different transform. The output
ure of RDT is a weighted average of the region-specific fea-
s, defined as

xt = FRDT(ot) =

N∑
i=1

κ
(i)
t fi(ot) (1)

ot the vector of input features at time t, N being the total
ber of regions, κ(i)

t being the posterior probability of Gaussian
ven ot, and fi being a region-dependent parametric vector-to-
tor function.
In order to include information from the acoustic context, RDT
long-span features as input, which are obtained by concate-

ng several frames of PLP [10] coefficients. Specifically, if ct
sed to denote the PLP vector at time t, the long-span feature

September 17-21, Pittsburgh, Pennsylvania



vector ot will contain coefficients from time t− � to t+ �:

ot = [cTt−�, ..., c
T
t−1, c

T
t , c

T
t+1, ..., c

T
t+�]

T (2)

As a special case of RDT, the regional function fi is a linear
transform:

fi(ot) = Aiot + bi (3)

Ai is a projection used to select low-dimensional features from ot,
and bi is a correction term in the projected space. This scheme is
referred to as the region-dependent linear transform (RDLT).

2.1. RDLT vs. fMPE and mean-offset fMPE

In RDLT, if no parameter-sharing is used among the projections,
distinct parameters in Ai will easily outnumber those in bi, mak-
ing the latter less noticeable. For this reason, we simply ignore
the biases in our experiments, using only one projection for each
region.

In the original fMPE [6], an opposite strategy is adopted, i.e.,
only one bias vector is used for each region [7, 9]. Since a bias
vector does not have a lot of parameters, fMPE uses very large
number of regions to increase the overall power of the transform.

Mean-offset fMPE [8] is a recent improvement to the original
fMPE. It uses “mean-offset” features as well as Gaussian posteri-
ors as input features of a global linear projection. It also employs
an improved context expansion layer to apply weighted average of
the features from adjacent frames in order to form the final feature
vector of the current frame. Without its context expansion layer,
mean-offset fMPE can be written as:

Fm-fMPE(xt) = xt +Mht (4)

where the input feature xt is a low-dimensional vector that is usu-
ally obtained by applying a fixed projection on the long-span fea-
ture vector ot. We can assume that xt = Pot. ht is a joint vector
of a Gaussian posterior vector κt and a mean-offset vector δt.

ht = [ηκT
t , δ

T
t ]T (5)

δt = [κ
(1)
t dT

(t,1), κ
(2)
t dT

(t,2), ..., κ
(N)
t dT

(t,N)]
T (6)

d(t,i) = Σ−1
i (xt − μi), ∀i ∈ [1, N ] (7)

The mean-offset feature is the difference between the feature vec-
tor and the mean μi of Gaussian i, weighted by the inverse of Σi,
the diagonal standard deviation matrix of Gaussian i. Mean-offsets
are further weighted by the posteriors of Gaussians, and the pos-
terior vector is scaled by a predetermined constant η, set to 5.0
in [8]. It is easy to see that if xt has p dimensions, δt is a N · p
dimensional vector, and ht is a N · (p+ 1) dimensional vector.

From the perspective of fMPE, the input feature vector ht is
used to encode the position information of xt. When mean-offsets
are used, they provide additional information about the relative
location of a frame within one Gaussian. In this way, using a GMM
of a moderate size is probably enough to tell where an observation
vector is.

Interestingly, mean-offset fMPE can be rewritten in terms of
RDLT in spite of their different origins. First, let us rewrite Eq. (4)
by breaking matrix M into two parts Ma and Mb:

Fm-fMPE(xt) = xt +Maδt +Mbκt (8)

in whichMa is a p×N ·pmatrix applied on mean-offset features,
andMb is the original p×N fMPE matrix, which is applied to the
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teriors. For simplicity, we assume that the scalar η is included
b.

Now, if we break the columns of Ma and Mb into N groups
ectively by Gaussian, and use the fact that

∑N
i=1 κ

(i)
t = 1, it

ows that

m-fMPE(xt) = xt +

N∑
i=1

(κ
(i)
t M (i)

a d(t,i) + κ
(i)
t M

(i)
b )

N∑
i=1

κ
(i)
t

[
(I +M (i)

a Σ−1
i )xt + (M

(i)
b −M (i)

a Σ−1
i μi)

]
(9)

re M (i)
a is the i-th p × p block of Ma, and M (i)

b is the i-th
mn vector of Mb.
Recall that xt = Pot. We can define a constrained RDLT as

Fc-RDLT(ot) =

N∑
i=1

κ
(i)
t (CiPot + bi) (10)

re Ci is a full-rank matrix. Obviously it is at least as general
he transform in Eq. (9). In fact, the two are equivalent to each
r since the following equation array has a unique solution for

(i)
a and M (i)

b given any Ci and bi.{
Ci = I +M

(i)
a Σ−1

i ∀i ∈ [1, N ]

bi = M
(i)
b −M

(i)
a Σ−1

i μi ∀i ∈ [1, N ]
(11)

This observation explains why mean-offset fMPE is able to
less Gaussians than the original fMPE: simply because it has
ore powerful feature transform in each region. It also suggests
there is nothing special about the mean-offset features.
Further more, in this analysis, we found that without its con-
expansion layer, mean-offset fMPE would be equivalent to
nstrained RDLT, where the region-dependent transform hap-

s in a projected space. In this case, anything rejected by the
ection P (usually not discriminatively trained and suboptimal)
never be seen by the discriminative feature transform. In con-

t to this, the unconstrained RDLT can reselect features from the
ustic context because it optimizes linear projections of long-

features. By this means, using an additional context expan-
layer in mean-offset fMPE seems more necessary than in the

onstrained RDLT.

RDT optimization

T is optimized discriminatively under the MPE criterion, so
the features are more suited for recognition error reduction.
For R training utterances with transformed features X =

1, ..., XR} and reference transcriptions {W ref
1 , ...,W ref

R }, the
E objective function [4] is defined as

MPE(X, λ) =

R∑
r

∑
Wr

p(Xr |Wr, λ)βp(Wr)α(Wr,W
ref
r )∑

W ′
r
p(Xr |W ′

r, λ)βp(W ′
r)

(12)
re Xr = {xr

1, ..., x
r
T } is the sequence of transformed fea-

vectors of utterance r, Wr is a hypothesis word sequence
he utterance, α(Wr,W

ref
r ) is the phoneme accuracy score

that hypothesis with respect to the reference, and λ =
, ..., μS ,Σ1, ...,ΣS} is the set of Gaussian means and covari-
es of an HMM that is trained from X. The exponent β is used
educe the dynamic range of the acoustic scores.



Although our goal is to optimize the features, how the HMM
is trained affects the MPE derivative, hence the performance of
the optimized feature transform, because λ depends indirectly on
RDT through the transformed features X. It is often preferable to
assume ML update of the HMM rather than MPE update, so that
the optimization will concentrate more on finding discriminative
features rather than adapting features to a discriminative model.

The chain rule can be used to compute the derivative of Eq.
(12) with respect to the parameters of RDT. For example, if (3) is
the regional function of RDT, the derivatives are

∂HMPE(X, λ)

∂Ai
=

∑
r,t

κ
(i)
r,t

∂HMPE(X, λ)

∂xr
t

or
t

T (13)

∂HMPE(X, λ)

∂bi
=

∑
r,t

κ
(i)
r,t

∂HMPE(X, λ)

∂xr
t

(14)

The derivative of MPE with respect to xr
t can be expressed as

a summation of two terms:

∂HMPE(X, λ)

∂xr
t

=

(
∂HMPE(X, λ)

∂xr
t

)
λ

+
∂HMPE(X, λ)

∂λ

∂λ

∂xr
t

(15)
The first term is derived by fixing λ, and the second term is

obtained via the chain rule.
If word lattices are used to represent the hypotheses, the first

term of (15) can be computed via lattice-based forward/backward
algorithm using the formula(
∂HMPE(X, λ)

∂xr
t

)
λ

= −β
∑

q∈Qr
t

∑
m∈Mq

D(q,m, t)Σ−1
m (xr

t −μm)

(16)
The accumulation takes place in those arcs Qr

t that contain xr
t ,

with Mq being the Gaussians in arc q, and D(q,m, t) being a
weighting scalar:

D(q,m, t) = p(q | Xr, λ)
[
sr

λ,q − sr
λ

]
ψq

m(t) (17)

First, p(q | Xr, λ) is the posterior of the arc in the lattice. Sec-
ondly, the two scores sr

λ,q and sr
λ are the expected accuracy score

over all hypotheses that contain arc qr , and the expected accuracy
over all hypotheses (i.e., the MPE score of this utterance), respec-
tively. Finally ψq

m(t) is the posterior probability of Gaussian m
within arc q.

The second term of the MPE derivative (15) depends on how
the model is updated. When the model is updated via ML training,
a forward/backward pass on the reference transcripts is needed in
order to compute this term, using the equation below:

∂HMPE(X, λ)

∂λ

∂λ

∂xr
t

= β
∑
m

γr
m(t)∑

t′ γ
r
m(t′)

· [(xr
t − μm)(Σ−1

m GmΣ−1
m − φmΣ−1

m ) + Σ−1
m Jm

]
(18)

In (18), γr
m(t) is the posterior probability of Gaussian m at time t

given the observations and reference word sequence. Note that we
have made an assumption that γr

m(t) is independent of the current
model λ, because otherwise the derivative would be too compli-
cated. The assumption is true if we use a fixed model λ(0) and
fixed features X(0) to compute γr

m(t). Similarly, λ should be up-
dated via single-pass retraining (SPR) [11], in which λ(0) and X(0)

are used to compute the forward/backward variables. In practice,
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find that the regular EM update also works, using the current
el and features in the forward/backward pass, although in this
convergence cannot be guaranteed.

Finally, Gm, Jm and φm are Gaussian-dependent statistics
should be accumulated over all data from the lattice-based for-
d/backward pass. They have forms similar to (16) and can be
computed in the lattice-based forward/backward pass.

m = β
∑
r,t

∑
q∈Qr

t

∑
m∈Mq

D(q,m, t)(xr
t − μm)(xr

t − μm)T

(19)

m = β
∑
r,t

∑
q∈Qr

t

∑
m∈Mq

D(q,m, t)(xr
t − μm) (20)

m = β
∑
r,t

∑
q∈Qr

t

∑
m∈Mq

D(q,m, t) (21)

We use a gradient descent algorithm [12] to update the param-
s of RDT. λ can be updated through SPR, or approximately
ugh the regular EM training.

3. Experiments
9], we evaluated the performance of RDT in an SI system that

trained on a 2300-hour EARS RT04 CTS training corpus.
ting was performed on the union of two sets: the RT03 eval-
on set (Eval03), consisting of 3 hours of Switchboard-II and
ours of Fisher data, and the RT04 development set (Dev04),
sisting of 3 hours of Fisher data.
The baseline system used a Vocal Tract Length Normalized
LN) PLP front-end, computing 14 cepstral coefficients and
alized energy per frame of speech (25 msec window length,
sec frame step), followed by mean and covariance normaliza-

. The actual 60-dimensional features used in acoustic model
ing were produced by applying LDA+MLLT on sets of 15

tiguous cepstral frames (225 dimensions).
Recognition was carried out in three passes, using a composite
in-word triphone State Tied Mixture (STM) HMM, a within-
d quinphone State Clustered Tied Mixture (SCTM) model, and
ossword quinphone SCTM model, respectively. Refer to [9] for
ils of the language model and the decoding procedures.
The baseline crossword SCTM model consisted of approxi-
ely 900K Gaussians in 7K state clusters. MPE training with

MI prior [13] was applied to the baseline models on unigram
ces, generated on the 2300-hour corpus using the ML models.
A 1000-region SI-RDT was initialized from the crossword
+MLLT projection. A smaller crossword SCTM model (44

ssian per state, 7K state clusters) was used to train the feature
sform on the same lattices as in baseline MPE training. The
l ML and MPE systems were trained using optimized RDT
ures.
The table below shows that SI RDT gives 9.3% and 5.8% rel-
e WER reductions compared to the ML and MPE baselines,
ectively.

Transform ML Model WER MPE Model WER
LDA+MLLT 22.5 20.4
SI-RDT 20.4 19.2

le 1: Unadapted Eval03+Dev04 decoding results of ML and
E models



Given the success of SI-RDT, a further question is whether
RDT performs well in SAT procedures such as CMLLR-SAT [3] or
HLDA-SAT [14]. In CMLLR-SAT, SD transforms are applied on
top of the global transform to reduce the inter-speaker variability.
In HLDA-SAT, another set of SD transforms are applied at the
front-end to the cepstral coefficients and normalized energy.

A straightforward approach is to perform SAT on top of a
model trained with SI-RDT. However, the problem is that when
RDT is estimated, there is no consideration for the SD transforms
that are applied on top of it. Such SD transforms, usually estimated
under the ML criterion, could take away some of the gain from the
discriminatively trained RDT.

Ideally, to integrate RDT with SAT, we should assume that λ in
Eq. (12) is updated by SAT. However, the derivative would be too
complicated to compute. Instead, we use the following procedure
to integrate RDT with CMLLR-SAT, using alternating updates of
the RDT and the SD transforms:

1. Train SI-RDT without SD transforms.

2. Train an SI crossword SCTM model using SI-RDT

3. Estimate SD transforms using the model from step 2.

4. Re-estimate RDT (referred to as SA-RDT) under the pres-
ence of fixed SD transforms. The derivative of MPE should
be propagated through these transforms.

5. Use SA-RDT and the SD transform to finish the SAT, train-
ing an STM model and an SCTM non-crossword model (the
SCTM crossword model has already been updated together
with SA-RDT).

The integration of RDT with HLDA-SAT is not much different,
because another set of SD transforms in HLDA-SAT is applied
before RDT, which can be viewed as a kind of front-end normal-
ization of cepstral coefficients.

The CMLLR-SAT experiments on English CTS use the same
training and testing data, front-end analysis, LM, state clusters,
and lattices as the SI experiments. The table below compares the
performance of SA-RDT to the baseline system, and to the system
trained with SI-RDT using the straightforward approach.

Transform ML Model WER MPE Model WER
LDA+MLLT 20.2 18.5
SI-RDT 18.8 17.6
SA-RDT 18.0 17.2

Table 2: Adapted Eval03+Dev04 decoding results of SAT-ML and
SAT-MPE models

As we can see, better results are obtained by re-estimating
RDT with fixed SD transforms. The relative gains over the base-
line are similar to what we had on SI systems, measured as 10.9%
and 7.0% for the ML and MPE systems, respectively.

4. Conclusions
As a complement to [9], this paper has presented a more theoret-
ical analysis of RDT and experimental results on speaker adapted
systems. We have shown that mean-offset fMPE, a substantially
different method, has an core equivalent to a constrained version
of RDT. We also give the formulae of the MPE derivative with re-
spect to RDT in an implementation-oriented way, showing neces-
sary training passes and sufficient statistics to accumulate. Finally,
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have presented a procedure that performs alternating updates of
SA-RDT and the speaker-dependent transforms, which yields

relative WER reduction in the English CTS SAT-MPE sys-
. It is more effective than simply performing regular SAT on
of an SI-RDT.
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