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Abstract

Building acoustic events and their sequence analysis (AES system)
is a method that proved its efficiency in [1]. Indeed, the methodol-
ogy combines the power of the world model GMM, used in state-
of-the-art speaker detection systems, for extracting speaker inde-
pendent events with an analysis of these event sequences via tools
usually used in so-called High Level Speaker Detection systems.
The efficiency of this system has been validated at the last NIST
evaluation campaign. This paper aims at proposing a new frame-
work by applying an AES system on multiple classes, C-AES.
The originality of this work is to consider that intraclass sequence
analysis can bring more information than a global analysis on the
whole speaker utterance. This paper also proposes a method to
take into account the apriori knowledge of the classes within the
scoring process. The results support the fact that intraclass infor-
mation is discriminant for speaker verification, as a combination
with a state-of-the-art GMM brings a 12% relative gain at the DCF.
Index Terms: speaker verification, sequential analysis, high-level
features, multiclass.

1. Introduction
In the past few years, the automatic speaker recognition field made
an extensive use of Gaussian Mixture Models to deal with the
problem of text-independent speaker recognition [2]. The latter
has fulfilled its role by reducing error rates especially in NIST
SRE campaigns1. Since the introduction of an extended data task,
drastically increasing the amount of data, the community tends to
model other types of information, prosodic, phonetics [3], idiolec-
tical [4], usually referred to as high level features [5]. In this area,
phonotactic methods [3] have proved to be a promising strategy. It
basically assumes that phoneme sequences carry speaker specific
information. Its main disadvantage is that it needs a consequent
amount of data to be efficient. It also implies that phoneme se-
quences are the proper time unit to carry out a sequence analysis.
In [1], we proposed a system, named Acoustic Event System
(AES), which does not use any apriori information on the type of
acoustic events. AES uses the ability of an general/world GMM,
the classical UBM, to model any kind of distribution for extract-
ing automatically a set of acoustic events. Using these acoustic
events gathered from the UBM model, we perform a sequence
analysis, thanks to an Ngram approach. The AES system showed
a good level of performance during NIST-SRE 2005 evaluation,
when combined with a standard GMM system.

1www.nist.gov/speech
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paper proposes a methodology to carry out a multiclass anal-
using an AES system. In the literature, multiclass analysis
idely used in speech recognition, whereas for speaker verifi-

n, approaches like [3] and [6] showed relatively good perfor-
ce.
C-AES consists in applying an AES system on each classes
re combining all information to perform the multiclass anal-
. It aims at underlying the importance of the intraclass infor-
on compared to the interclass one. The classes are made in
same manner as acoustic events and are called Class Events,
ey are at a much lower resolution than the standard events

n AES system. The basic idea is that it brings other infor-
on than classical systems which usually work on the whole
ance. Indeed, GMM based systems perform best with a single

sformation for each speaker utterance (e.g.:MAP adaptation).
support the hypothesis that characterizing a speaker by several
class analysis brings other information. In order to succeed in
approach, the apriori knowledge on the class is important and a
ification of the TFLLR (Term Frequency Log Likelihood Ra-
kernel, presented in [7] is needed. This paper is organized as
ws. First, a brief description of an AES system is presented
before presenting the principle of C-AES in section 3. In this

ion, the approach for generating the Class Events can be found
the method to combine multiclass information is presented.
re concluding on this work in 5, section 4 summarizes the dif-

nt experiments and results, in which a C-AES system and a
dard AES system are compared.

The LIA Acoustic Event Sequence system
AES system (presented and validated at NIST 2005) has its

ciple explained in this section. It consists of two main parts: a
ker independent process where acoustic events are built, and
eaker dependant process during which the verification task is
ormed.

Speaker independent acoustic dictionary

AES dictionary symbols are generated by the GMM system
presented in 4.2. The amount of training data is voluntarily

so that information contained in the GMM is maximal. The
step in building the dictionary consists in extracting the Gaus-
with maximum likelihood and to use its associated index as a
bol. At first, the dimension of the dictionary generated is equal
e number of GMM components (2048 in this paper).
next step consists in reducing the number of symbols to form
ustic Events. The reader can refer to [1] for a more detailed ex-
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planation of the reduction process. The original dictionary consist-
ing of 2048 words (indexes of the Gaussian) is reduced by cluster-
ing Gaussian indexes. A 128 dictionary size, number determined
empirically, showed a good level of performance. For further no-
tice, symbols from the AES dictionary are called Feature Events.

2.2. Symbol generation procedure

The adopted strategy is to transform all the parameterized signals
into symbol sequences. Indeed, each feature file belonging to the
train, test and world model set is submitted to the same process.
For a given utterance, each frame is passed through the background
model to compute its 1-best component. Then, the index of this
component is replaced with its corresponding symbol in the dictio-
nary previously built. It is worth noting that the resulting sequence
length is the same as the number of frames in the feature file.

2.3. Speaker specific information modeling

Having produced a speaker independent dictionary, a Bag of
Ngram approach is used to build speaker specific models upon
this dictionary. Indeed all Ngrams (seen at least twice) of order
1 to 3 are computed for every speaker utterances. We used all
Ngrams seen in the background data that have occurred more than
10 times. All probabilities for each Ngram are computed. The
modelling and scoring process is performed within a SVM classi-
fier and the TFLLR (Term Frequency Log Likelihood Ratio) kernel
framework.

3. C-AES: A multiclass analysis for AES
This section aims at explaining the methodology proposed for a
multiclass analysis within the use of an AES framework.

3.1. Principle

The main idea of a multiclass AES system (C-AES) is to perform
the sequence analysis inside classes of the speech signal. Such
classes can be of two different types:

• Phonetic based classes, e.g.: vowels, fricatives, nasals, . . . ,

• Acoustic based classes obtained in an unsupervised way.

The second approach is chosen in this work, as the classes are
here considered as another type of Acoustic Events, but at a much
lower resolution. Their generation naturally follows the same pro-
cedure seen in (2.1). Building a C-AES system consists then in the
following steps, illustrated by figure 1:

• Generation of the Feature Event (FE) set as in a classical
AES system. (see 2.1),

• Generation of the Class Event (CE) set (see 3.2),

• Application of an AES system for each CE independently,

• Combination of the information coming from the multiple
systems (see 3.4).

3.2. Generation of Class Events

Two different sets of Acoustic Events are generated as explained
in 2.1, the Class Events and the Feature Events. The former being
at a much lower resolution than the latter. The CE are produced
by performing an additive reduction step aiming at clustering the
Feature Events into bigger classes. The CE have a different role
compared to the FE as no sequential analysis will be performed
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re 1: Combination of multiclass information: an AES system
pplied inside each of the n Class Events along their Feature
ts. A combination process is performed before the concatena-
of all information.

e CE’s resolution. In this work, the dictionary size for FE is
to 128 and to 8 for CE.

process of generating symbols from speech utterances follows
principle explained in 2.2, except that for each utterance two
of symbol streams are now computed. It is worth noticing that
is a group of FEs, which leads to the following remarks:

• This framework can be seen as a sequence selection scheme
in a standard AES system, i.e. all interclass sequences are
discarded in this framework.

• A C-AES system implicitly maximizes the coverage dur-
ing the analysis. Indeed, each Class Event has a smaller
dictionary size than in a standard AES, the coverage of all
possible sequences inside classes is therefore maximize. To
illustrate this last point, Table 1 shows the repartition of the
dictionary size among the different Class Events.

e 1: Feature Event Dictionary size for the 8 Class Event C-
.
k 1 2 3 4 5 6 7 8

ictionary size 37 10 11 29 9 9 13 10

Kernel Construction

AES system uses a Support Vector Machine framework for
coring process with the use of the TFLLR kernel. This kernel
ed to produce feature vectors for Ngram type approaches. For
purpose, the TFLLR kernel does not entirely fulfil our needs.
l-known normalization techniques such as Rank Normaliza-
or Z-Norm could help to normalize out class influence but do
fit our problem. Indeed, they are powerful when no apriori

ledge is available. In section 4, results tend to support the
that this information is crucial, either is the way of estimating

kernel needs to be modified slightly so that it can perform a
ticlass scoring, by taking into account the CE influence. Let us
ider tokens k belonging to a bag-of-Ngram. Let the token k
ihood on a data sequence X be defined as p(k|X), the TFLLR
el is defined by:

X

k

p(k|X1)p
p(k|XW )

p(k|X2)p
p(k|XW )

− 1 (1)

re X1,X2,XW are the respective training data of two differ-
speakers and the background model. The kernel construction



finally resides in the weighting of speaker likelihoods by the like-
lihood of the background model.
All tokens k are Ngrams, whose symbols belong to the Feature
Event dictionnary. Let Ck being a Class event related to the token
k, the computation of the LLR for the whole utterance is given by:

��r(k|X) =
X

k

p(Ck|X)��r(k|X, Ck) (2)

In order to take into account the information imbalance between
classes, the following mapping (i.e. producing a fixed-dimension
vector from a token k and a Bag of Ngram B, as an input of a
SVM classifier) is used:

φ(k, X) = p(Ck|X)
p(k|X, Ck)p

p(k|XW )
, ∀k ∈ B (3)

The resulting feature value is the token probability weighted by the
background model probability and by its Class event probability

3.4. Multiclass information combination and SVM modelling

The process of construction of an input vector for a SVM classifier
from an utterance is presented. For each Class event, a sequence
analysis is made inside the class with its FE related dictionary.
This produces 8 vectors in our case. For a single utterance,
all vectors from all Class Events are then concatenated after
being weighted by the class probability described in the previous
paragraph.

In order to build impostor models, all speakers used to train
the world model have been used to represent the negative labelled
data. The input of the classifier is the concatenation of all impostor
trials and the target speaker trial. The maximum margin decision
is found by passing this input through a linear kernel. We used
the SVM-Light toolkit by Thorsten Joachims [8] to induce SVMs
and classify instances. To compensate for the severe imbalance
between the target and background data, we adopt a cost model to
weight the positive examples 200-fold with respect to the negative
examples (a number found empirically). The scores obtained in
this manner are then normalized using Tnorm.

4. Experiments and Results
In this section, we first present the protocol used for the exper-
iment based on the NIST SRE evaluations. Next, the baseline
GMM/UBM system used for experiment is described. Results of
the C-AES system are presented as well as different methods to
estimate the class weighting factor precised in eq. 3. To conclude,
the performance when combined with a standard GMM-UBM sys-
tem is compared with the classical AES system.

4.1. Datasets

Speaker verification experiments, presented in section 4 are per-
formed based upon the NIST 2005 database, all trial set (det1),
male speakers only. This condition consists of 280 speakers. Train
and test utterances contain 2.5 minutes of speech in average (tele-
phone conversation). The whole speaker detection experiment
consists in 13624 tests (951 target tests). Each test is made in-
dependently and the use of information from other tests to take a
decision on the current test is forbidden. Results are given as de-
tection cost function (DCF) and equal error rate (EER). DCF is
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Bayesian risk function defined by NIST with Ptarget = .1,
= 1, and Cmiss = 10, as well as Detection error tradeoff

T) curves [9].

The LIA SpkDET UBM/GMM system

background model used for the experiments is the same as
background model used by the LIA for the NIST SRE 2005
paign (male only). The training is performed based on NIST

1999 and 2002 databases, and consists in 1.3 million of
ch frames. Training was performed using the ALIZE and
SpkDet toolkits2 [10]. Frames are composed of 16 LFCC

meters and its derivatives. A normalization process is applied,
at the distribution of each cepstral coefficient is 0-mean and
riance. The background model posses 2048 components and
omponent variance is above 0.5. The speaker model param-
are obtained by adapting the world model mean parameters

The reader will find in section 4 its performance with a TNor-
sation applied on scores.

Estimation of class probabilities

section investigates two approaches for the class probability
ate. The first one consists in taking the apriori probability for
Class Event, the other makes the use of MAP estimation for

probability.

. Aprori class as a weighting factor

estimate the apriori probability of each Class Event, all
s Event data from the background model has been used, i.e.

k) = P (Ck|XW ). The probability is the CE’s frequency of
rrence in the data. In our case, Table 2 gives the weighting
r used for the experiment.

. Using MAP for the estimation

aximum a posteriori (MAP) approach can also be employed to
ate this probability. The estimation on a single utterance not

g enough precise, MAP enables to rely on apriori probability
e class is not present in the utterance. Precisely, if p̂(Ck|X) is
ew probability estimate, then:

k|X) = αp(Ck|X)+(1−α)p(Ck|XW ), with α =
C(k)

C(k) + τ

re C(.) is the count operator. τ is called regulation factor (usu-
found empirically). Here, it has been found by dividing the
age utterance length by the number of class (with 8 classes τ
been fixed to 1000). Table 3 shows the effect of this technique
he performance of the C-AES system.
results tend to prove the fact that the integration of informa-
from each class is mandatory. Indeed, the system without any
hting performs two times worse than the one with the apriori
ation. The second experiment goes one step further by show-

that the estimation method is also very important. An absolute
of 1% both at the EER and the DCF is observed when MAP
ation is used.

System combination

the results obtained at the last paragraph, it is clear that a C-
system cannot compete with a standard GMM/UBM. How-

http://www.lia.univ-avignon.fr/heberges/ALIZE/



Table 2: A priori class probability for the 8-class model.
Ck 1 2 3 4 5 6 7 8

P (Ck) .41 .02 .11 .26 .07 .03 .06 .03

Table 3: Performance of C-AES with different estimates of CE
probability

System DCF (x100) EER

No weighting factor 9.80 28.5
A Priori 6.46 14.87
MAP estimation 5.87 13.89

ever, it seems particularly efficient in the fusion process as we
present some experiment on system combination below.
For these results, all systems have been Tnormed and an arithmetic
mean between systems is performed. A GMM/UBM is presented
and corresponds to the baseline presented in 4.2. Table 4 presents
the result of different combinations between baselines and the C-
AES system, while Figure 2 illustrates the results in terms of a
DET curve (fusion weights have been found empirically to opti-
mize the DCF).
While a C-AES system performance is slightly lower than the clas-
sical AES system, it is interesting to notice that a better performace
is observed in fusion. Indeed, a relative gain of 12% and 7% is ob-
served at the DCF and EER respectively compared to 7% and 6%
for a standard GMM/UBM and AES fusion. This methodology
tends to support the proposition that the important information for
a sequential analysis resides inside the classes of the speech sig-
nal and that interclass relationships is less important for such a
dynamic related analysis.
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Figure 2: DET curves for baseline, CAES, and combined systems.

5. Conclusion and Future Work
By proposing a framework in section 3 for applying sequential
analysis in a multiclass framework, this paper supports the idea
that multiple analysis for a single utterance contains speaker-
specific information. By extending the TFLLR kernel so that
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Table 4: Combination of different systems
System DCF (*100) EER

GMM 3.58 8.54
AES 5.37 13.33
CAES 5.87 13.89

GMM + AES 3.31 8.04
GMM + CAES 3.16 7.96

ing on different classes can be performed, we proposed a
ework for combining the different class information. We also
ed in section 4 that estimation of prior knowledge has to be

fully made.
re work will focus on a extending this framework to a multi
lution framework by generating a lot more segmentation sets
feature sets in different resolutions in order to combine these
tiple analysis into a single vector for the classifier.
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