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Abstract

Human listeners use lexical stress for word segmentation and
disambiguation. We look into using lexical stress for large-
vocabulary speech recognition for the Dutch language. It appears
that beside vowels, consonants should be taken into account. By
introducing stressed phonemes, and features for spectral bands and
the fundamental frequency, we reduce the word error rate by 2.6 %.
Index Terms: speech recognition, lexical stress, Dutch.

1. Introduction
Prosody is an important part of the spoken message structure. The
foundation of prosody of many languages is laid by lexical stress
[1]. Higher prosodic levels attach to the words at stressed syl-
lables [2]. Lexical stress is used by listeners to identify words.
Though the orthography does not normally encode stress, English
has minimal pairs like súbject – subjéct, trústy – trustée, and désert
– dessért. Pairs like thı́rty – thirtéen or digréss – tı́gress differ very
little except in the stress pattern.

Even though in English and Dutch stress is not on a fixed syl-
lable of the word, all morphologically simplex words of Germanic
origin and many others do start with a stressed syllable. Listen-
ers use this for segmentation of speech into words [3]. English-
hearing children appear to associate stressed syllables with word
onsets at the age of seven months already [4].

Dutch listeners also use the stress pattern to identify words
before they have been fully heard. After hearing the beginning of
a word octo-, Dutch listeners will have deciphered whether it is
octó- or ócto- and reconstruct octóber or óctopus [5].

Garden-variety speech recognisers do not use lexical stress,
useful though it may be. This paper will look into how lexical
stress can be automatically detected, and how it can be used to
improve speech recognition.

2. Related Work
There has been research on the acoustic correlates of lexical stress.
Sluijter [6] in fundamental linguistic research on the acoustic prop-
erties of stress minimal pairs demonstrated that lexical stress in
English and Dutch is signalled mostly through duration, formant
frequencies, intensity, and spectral tilt. The latter is a feature that
denotes the energy in high frequency bands relative to the energy
in low frequency bands. Van Kuijk [7] examined the acoustic prop-
erties of a larger corpus of Dutch telephone speech and found sim-
ilar results: a combination of duration and spectral tilt was the best
predictor for lexical stress.

Of those that have used lexical stress in a speech recogniser
[8, 9, 10], only [9] has a performance gain. This is probably what
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other authors are after as well; but how this is to be done is
discussed. Van den Heuvel [10] hopes “distinguishing stressed
unstressed vowel models may have a general impact on recog-
n results.”
Notably, none of the previous approaches has taken into ac-
t the well-observed influence that stress has on consonants:
sed and unstressed consonants are realised differently [1] and
sed consonants have a longer duration [11]. Consonants are
enced by speaking style in the same ways as vowels are: du-
n, spectral tilt and formant frequencies (for consonants with a
ant structure) [12]. This suggests similar effects can be found

exical stress on consonants. The closest thing to a rationale for
regarding consonants in automatic lexical stress recognition is
claim that consonants do not carry lexical stress in [9]. This

is not further motivated, and it will be demonstrated to be
rrect.

3. Model
Objectives

e humans use lexical stress in processing speech, modelling it
d help speech recogniser performance. We expect the follow-
advantages from using lexical stress.

ne model accuracy Separating phone models into stressed
and unstressed versions may increase predictive strength
of the models, improving recognition. For example, un-
stressed vowels tend to become /@/1. Because the range
/@/–/a:/ is split into into /@/–/a:/–/"a:/, the phone models
may become more accurate.

d segmentation English hearers, when presented with a faint
recording “conduct ascends uphill”, will reconstruct words
starting at stressed syllables, for example, “the doctor sends
a pill” [3]. Humans use stress for segmentation; a speech
recogniser could use this strategy too.

d recognition Lexical stress signals differences between
words with the same segmental content and different mean-
ings (e.g. Du. vóorkomen ‘happen’ – voorkómen ‘prevent’),
words of different categories (e.g. En. récord – recórd), and
similar words with different stress patterns (e.g. En. portráy
– pórtrait).

Syllables

ical stress is specified for syllables as a whole: consonants’
ifications for stress must match the vowels’ in the same sylla-
This can be done by using a consistently stress-marked lexi-

In both Dutch and English.
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con: if it contains both /"s "2 "b d Z E k t/ and /s 2 b "d "Z "E "k "t/, the
recogniser would never hypothesise /s "2 b "d Z "E k "t/.

In the linguistic literature a difference is made between reali-
sations in the coda and in the onset. For example, English /t/ is
pronounced as [th] in táil, but as [t] in rétail and lı́ght [1]: /t/ is
only aspirated in the onset of a stressed syllable.

(1) (after [1]) relates different levels of linguistic prominence.
This article only discusses word stress, which is admittedly a sim-
plification: foot stress and phrasal stress are not taken into account,
let alone intonation.

H tone
|

( · × ) phrasal stress
(× ) ( · × ) word stress
(× · ) (× · ) (× · · ) foot stress

σ σ σ σ σ σ σ σ

@ lEN TI 6 r@ tO: rI @U

(1)

3.3. Acoustic representation

We look into acoustic correlates of lexical stress that can be used in
a speech recogniser, for example by including them in the feature
vectors.

Fundamental frequency From linguistic literature [2] and litera-
ture on automatic stress recognition [13] it is expected that
pitch is not straightforwardly correlated with lexical stress.
The fundamental frequency can be included in a speech
recogniser’s feature vector though.

Formants Unstressed phonemes can have more reduced realisa-
tions than their stressed counterparts. Separating MFCC-
based phone models into stressed and unstressed models,
whose formant values are confined to smaller areas, will
increase MFCCs’ ability to recognise the phonemes.

Spectrum The energy in a number of frequency bands can be ex-
tracted from the waveform to yield information about the
spectral tilt.

Duration Lexical stress is generally found to be correlated with
phoneme duration [6, 7, 11]. However, information about
phoneme duration is not available during first-pass recog-
nition with Viterbi. Standard HMMs can encode duration
through transition probabilities, but this does not work well
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in recognition. A number of alternatives have been pro-
posed though [14, 15].

ivatives In [9] it is found that fundamental frequency slope
is a better predictor of stress than the raw fundamental fre-
quency. We expect that derivatives for spectral features and
the fundamental frequency may be correlated with lexical
stress. To capture this correlation, we divide up consonants
into those in the onset, and those in the coda.

4. Experimental set-up
train a speech recogniser on the CGN corpus [16]. 772 record-
are selected for their degree of preparation (only “scripted”

rdings are used for consistency so that we do not need dif-
nt acoustic models for different speaking styles). These
42 recordings with a phrase each comprise 775 034 words and
ost 53 hours of material. Training data makes up 80 % of the
rdings, the test set 10 %, and the evaluation set another 10 %.
ry speaker occurs in one set only.
We use the syllable divisions and stress marks from the CELEX

con. All phonemes in stressed syllables are marked as stressed,
pt in function words. All features are normalised over one ut-

nce. HTK includes intensity and MFCC data in the feature vec-
. For the energy in spectral bands we use the Linux program
and Praat [17]. [6] chooses spectral bands so that the formants
t influence the results; we use the same bands: 0 – 0.5 kHz,

1 kHz, 1 – 2 kHz, and 2 – 4 kHz. We include differences be-
n the spectral bands to capture spectral tilt.
The fundamental frequency is extracted with Praat. Where
t does not find the fundamental frequency, it is linearly inter-
ted.
Due to such factors as the overall speaking rate, phone dura-
is not easily measured objectively. As an approximation of

relative length of a phone by a certain speaker in a specific ut-
nce, it is normalised. Define pj as a phone from the corpus.
s the realisation of the phoneme i = r(pj); ni is the number
ealisations of the phoneme i. d(pj) is the actual duration of
Uk is one utterance. The expected duration for a phoneme i is
ned as

μi =

P
pj :r(pj)=i

d(pj)

ni

. (2)

normalised duration of pj is

d
′(pj) = d(pj) · αk, pj ∈ Uk (3)
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Figure 1: Distributions of the duration of stressed (stroked lines) and unstressed (dashed lines) phones (in s).
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where αk is the speaking rate of utterance Uk, which is defined as

αk =

P
pj∈Uk

μr(pj)
P

pj∈Uk
d(pj)

. (4)

5. Results
Phoneme features are collected by forced-aligning phones with
a trained recogniser. Durations are found using the phoneme
model boundaries. The feature vectors contain an energy feature,
12 MFCC features, Sluijter’s spectral band features, and the funda-
mental frequency. We collect the averages over the feature vectors
for the middle states of HMMs. We perform t-tests on features for
stressed and unstressed variants of phonemes. All test are done on
significance level 0.01. Most features appear to be significant for
many phonemes; we select those that are significant for the most
phonemes.

Similarly to [6, 7], we find that duration in general is a good
indicator of stressedness. Stressed vowels are consistently longer
than their unstressed counterparts (see Fig. 1). This is significant
for 92 % of phonemes.

Interestingly enough, and unlike we found in an earlier exper-
iment on a much smaller corpus [18], the fundamental frequency
behaves much like we would expect. As Fig. 2 shows, it tends
to increase more in onsets of stressed syllables than in onsets of
unstressed syllables. This feature is significant for 92 % of conso-
nants.

For many phonemes stressedness correlates well with spectral
tilt measures. Sluijter’s spectral band B1 (0 – 0.5 kHz) is signif-
icant for 89 % of phonemes. First-order derivatives for spectral
bands, for example, ΔB4 (2 – 4 kHz) with 93 %, are mostly sig-
nificant. Difference between spectral bands, which would seem
to implement Sluijter’s spectral tilt [6] features, do not perform as
well. Most interestingly, the features that work for vowels give
similar results for consonants.

5.1. Recognition rate

The speech recogniser we use to test our hypothesis — using lex-
ical stress will improve speech recognition rate — is not exactly
state of the art. It uses context-independent models for lack of
time to train it; for 4.5 % of words no stress-marked transcription
is available so they are replaced by xxx. However, the purpose of
the baseline recogniser is not to recognise speech well, but to be
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ure 4: Recognition rates on the evaluation set while training.

pared to the stress-enabled speech recogniser. Both recognis-
ifferentiate between consonants in onsets and codas.
Fig. 4 shows that during training the stress-enabled speech
gniser consistently performs better than the baseline. Word
r rates after 60 training iterations are 56.72 % and 55.27 %;
is a relative improvement of 2.6 %.

6. Conclusion

paper has described the importance and the feasibility of us-
lexical stress in a speech recogniser. That stress works on the
ble level can be effectively modelled by adding stress marks
e phonemes in the speech recogniser lexicon. Lexical stress
been demonstrated to influence acoustically not only vowels,
also consonants. The same features that are canonically asso-
d with stressed vowels (duration, spectral tilt, and intensity)
orrelated with stressed consonants. The Viterbi algorithm and

dard HMMs cannot use the duration of a phone that is being
gnised.
We hoped to improve recognition performance on three ac-
ts: phone recognition, word segmentation and word recogni-

. We have created a proof-of-concept implementation. The
stic model does not use phone duration; the feature vectors

ude all features we could think of; all consonants and vowels,
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Figure 2: Distributions of ΔF0 for stressed (stroked lines) and unstressed (dashed lines) consonants (in Hz).
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without exception, are split into stressed and unstressed variants.
The cruel linguistic model — word stress is copied straight from
the lexicon — is a poor man’s prosody model compared to (1).
Still, we have been able to reduce the word error rate by 2.6 %.
This is a strong indication that modelling prosody with the right
tools is vital for good speech recognition.
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Figure 3: Distributions of spectral band features for (stroked lines) and unstressed (dashed lines) phones.
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