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Abstract
We describe an extension to the Baum-Welch algorithm for train-
ing Hidden Markov Models that uses explicit phoneme segmen-
tation to constrain the forward and backward lattice. The HMMs
trained with this algorithm can be shown to improve the accuracy
of automatic phoneme segmentation. In addition, this algorithm
is significantly more computationally efficient than the full Baum-
Welch algorithm, while producing models that achieve equivalent
accuracy on a standard phoneme recognition task.
Index Terms: speech segmentation, speech synthesis, phoneme
recognition, hidden markov models

1. Introduction
Hidden Markov Models have been shown useful for both seg-
mentation and recognition on word and phoneme tasks. How-
ever, for phoneme segmentation, such as used in building speech
databases for unit-selection speech synthesis[1], the labels (phone
segmentations) produced using the standard HMM-based align-
ment tools for speech recognition typically require extensive hand-
correction[2].

As well, while they may be internally consistent, the automat-
ically generated labels do not always reflect human labelers’ ideas
of the boundaries between phonemes. This is particularly notice-
able when context-dependent triphone models are used for auto-
matic segmentation; past research[3] has indicated that context-
independent models are preferable for segmentation tasks (though
[4] presents a novel way of compensating for the effects of context-
dependency). We hypothesize that, given that the state sequence,
and thus by extension the phoneme segmentation, is considered to
be a hidden variable in training, the Viterbi segmentations gener-
ated by HMM-based tools reflect boundaries that are optimal only
in a maximum-likelihood sense.

This raises the question of whether it is possible to use lin-
guistic knowledge, available in the form of manually generated
phoneme labels, to improve the quality of the models, and in do-
ing so improve both phoneme segmentation and recognition. In
this paper, we describe an algorithm for doing so, and provide re-
sults that show a marked improvement on an objective measure of
segmentation accuracy, as well as a significant reduction in com-
putational complexity.

2. Algorithm
In the standard EM algorithm for training HMMs[5], the state se-
quence required to calculate the likelihood function is considered
to be missing or hidden data. Thus, in order to obtain a maximum
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ihood estimate λ of the model parameters, we must calculate
conditional expectation of the likelihood given a current set
arameters λ′. This is the objective function Q(λ,λ′) which
en maximized in successive iterations (where Q is the set of
sequences and O is the observation sequence):

Q(λ, λ
′) =

X

q∈Q

logP (O, q|λ)P (O, q|λ′)

Calculation of this expectation involves summation over all
ible state sequences Q, which can be achieved in quadratic
1 using dynamic programming techniques, namely the for-
and backward algorithms. To speed computation, implemen-

ns of Baum-Welch often constrain the set of state sequences
g a beam search algorithm. This is accomplished by main-
ng a list of active states at each timepoint and storing only
e entries in the forward or backward lattice that are non-zero
bove the pruning threshold determined by the beam.
In our modified Baum-Welch algorithm, we introduce a phone
entation which constrains the set of possible state sequences
ose that pass through the given phoneme sequence. This can

epresented as an extra variable S in the formulation of the ob-
ve function Q(λ,λ′). We consider S to be known a priori,
gh it is concievable that it could be estimated jointly with the
r parameters, as in the hidden model sequence approach to
unciation modeling[6]. The objective function then becomes:

Q(λ,λ
′) =

X

q∈Q

logP (O, q|λ, S)P (O, q|λ′
, S)

Assuming independence between the parameters λ and the
e sequence S, in addition to the standard HMM conditional

pendence assumptions, the joint likelihood of the data and a
sequence q becomes:

P (O, q|λ, S) = P (O|q, λ, S)P (q|λ, S)

= P (O|q, λ, S)P (q|λ)P (q|S)

=
TY

t=1

P (ot|qt)P (qt|qt−1)P (qt|st)

In our experiments, the probability P (qt|st) is fixed at zero
ne depending on whether the state qt belongs to the phone
hough it is also conceivable that these probabilities could be

In practice, it often requires cubic time, as noted below.
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estimated independently, or that some other function indicating the
correspondence between phones and states could be used. There
are, however, distinct computational advantages to using a zero-
one function in the current case.

For an arbitrary topology, the forward algorithm has a com-
plexity of O(|Q|2T ) in time and O(|Q|T ) in memory. In prac-
tice, for training speech recognition systems using a left-to-right
topology, the worst-case complexities are O(T 3) and O(T 2), re-
spectively, since the number of states in the sentence HMM grows
linearly with the length of the observation, and the number of
active states grows linearly with the number of timepoints pre-
viously evaluated. However, when a phoneme sequence is used
to constrain evaluation, only those states belonging to the cur-
rent phone can ever be active. The number of active states at
each timepoint is thus constant in the expected number of states
in the current phone E[|Pt|], and the worst-case time complexity
is O(E2[|Pt|]T ) = O(T ).

3. Experimental Results
We implemented this technique in the trainer for the SPHINX-III
continuous speech recognition system[7], and tested it for both
phoneme segmentation and phoneme decoding on several corpora
of phonetically labelled speech data. The TIMIT dataset[8] con-
sists of 6300 phonetically balanced sentences from 630 speakers,
and contains officially designated training and test sets compris-
ing 3.13 and 1.14 hours of data, respectively. The F2B dataset
consists of one female speaker from the Boston University Radio
speech corpus[9], for whom a full set of phonetic labels is avail-
able. It consists of 111 news items, for a total of 0.93 hours of au-
dio. The SWB dataset is the subset of Switchboard conversational
telephone speech data phonetically transcribed at ICSI as part of
the Switchboard Transcription Project[10]. It contains 1287 sen-
tences and 0.81 hours of audio. Finally, the kaltext4 dataset is
a set of 534 phonetically balanced sentences (0.54 hours) from a
single speaker collected at Cepstral LLC for use in a unit-selection
speech synthesis engine.

We performed some normalization on the phonesets used in
the various datasets to make them consistent with each other, as
well as to make the resulting phoneset as close to the one used in
training our standard acoustic models. This involved removing a
fair amount of phonetic detail in some cases, such that the result-
ing phoneset represents a phonemic rather than a phonetic level of
transcription.

For the datasets without a designated training and test set, we
held out 10% of the utterances for testing. From the remaining
data, we trained acoustic models using both standard Baum-Welch
and phoneme-constrained Baum-Welch. Phoneme segmentation
was done using the sphinx3_align tool for Viterbi alignment.
Phoneme decoding used the sphinx3_allphone decoder with
a trigram model for phone transition probabilities trained from
the testing portion of the dataset. For each dataset, we trained
context-independent (CI) phone models using a three-state left-to-
right topology. We also trained context-dependent (CD) triphone
models using 2000 tied states. Except where noted, we used 16
Gaussian mixture components for the output distributions for CI
models and 8 Gaussians for CD models.

The results of phoneme segmentation, shown in Table 1, were
evaluated by calculating the RMS error in milliseconds of the pre-
dicted versus the reference labels. The phone sequences used as
input to segmentation were taken from the reference labels, with
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Dataset Model Algorithm RMSE (ms)

TIMIT CD Baum-Welch 31.035
TIMIT CD constrained 20.715
TIMIT CI Baum-Welch 29.258
TIMIT CI constrained 20.260
SWB CD Baum-Welch 107.730
SWB CD constrained 84.160
SWB CI Baum-Welch 43.252
SWB CI constrained 30.873
F2B CD (2 Gau) Baum-Welch 28.733
F2B CD (2 Gau) constrained 22.685
F2B CI (2 Gau) Baum-Welch 28.168
F2B CI (2 Gau) constrained 19.679
kaltext4 CD (2 Gau) Baum-Welch 33.870
kaltext4 CD (2 Gau) constrained 29.891
kaltext4 CI Baum-Welch 25.873
kaltext4 CI constrained 17.998

Table 1: Phoneme segmentation results

Dataset Model Algorithm PER (%)

TIMIT CD Baum-Welch 31.64
TIMIT CD constrained 34.13
TIMIT CI Baum-Welch 36.72
TIMIT CI constrained 41.44
SWB CD Baum-Welch 54.49
SWB CD constrained 55.18
SWB CI Baum-Welch 53.35
SWB CI constrained 53.94
F2B CD Baum-Welch 22.87
F2B CD constrained 26.22
F2B CI Baum-Welch 26.38
F2B CI constrained 28.99
kaltext4 CD Baum-Welch 30.67
kaltext4 CD constrained 31.81
kaltext4 CI Baum-Welch 31.03
kaltext4 CI constrained 35.16

Table 2: Phoneme recognition results

timing information left out, thus ensuring a one-to-one align-
t between the reference and hypothesis labels. For phoneme
gnition, we used phoneme error rate, as calculated using the
dard dynamic programming alignment algorithm. These re-
are shown in Table 2.

The amount of CPU time used in training one iteration of
IT context-independent phone models is shown in Figure 1.
ning was done on a 1.6GHz AMD Sempron64 based worksta-
with 1GB of RAM, running Linux 2.6.15. The number for

m-Welch with one Gaussian is an average over five iterations
itial training - since we used a flat initialization of the model
meters, the beam remains extremely wide until the parameters
n to asymptote.
For comparison purposes, we also applied several exist-
phoneme-segmentation algorithms to the kaltext4 dataset,
compared them with the segmentations obtained by “cross-
ling” this dataset using the TIMIT models. The algo-

s we compared are the dtw, sphinxtrain (SPHINX-II
i-continuous HMM), and ehmm (continuous HMM)[11] meth-
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Figure 1: CPU time required to train TIMIT CI models

ods implemented in the FestVox toolkit for building synthesis
voices[12]. We also trained kaltext4 models, using only the
word transcriptions of the dataset in the same manner as the
sphinxtrainmethod. The results of this comparison are shown
in Table 3.

For this experiment, it was necessary to perform a dynamic
programming alignment and calculate the RMS error over only the
aligned segments. This is because, in real-world phoneme segmen-
tation tasks, phonemes and silences in particular may be inserted,
deleted, or substituted by human labelers to match what was actu-
ally spoken. For the input to our segmentation algorithm, we used
the phone sequence predicted by the Festival text-to-speech en-
gine, which does not always match the reference labels. Of these
labeling algorithms, only ehmm is able to insert and delete silences
with any degree of accuracy, and therefore its slightly higher error
rate may be misleading. We plan to incorporate more intelligent si-
lence handling into the SPHINX-III aligner in the near future. It is
worth noting that SPHINX-III using context-independent models
also ran much faster than any of the comparison methods.

Method # Alignments RMSE (ms)

TIMIT (CD, Baum-Welch) 14869 190.167
dtw 14869 75.499
sphinxtrain 14770 38.660
kaltext4 (CD, 2 Gau) 14869 35.468
kaltext4 (CI, 4 Gau) 14869 34.735
ehmm 14902 32.244
TIMIT (CD, constrained) 14869 32.222
TIMIT (CI, constrained) 14869 30.419
TIMIT (CI, Baum-Welch) 14869 30.263

Table 3: Cross-labeling results on kaltext4

Though we expected that the unconstrained context-dependent
models would perform worse than the constrained ones in the
“cross-labeling” task, the magnitude of the difference is surprising.
It appears that there are a large number of catastrophic labeling er-
rors in the alignment for these models, where one phone extends
over a long sequence of heterogeneous speech data, as shown in
Figure 2. These are the same type of errors that show up in the
speaker-dependent, context-independent, and constrained models
when too many Gaussian mixtures are trained, indicating that this
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ost likely a parameter estimation issue.

Figure 2: Bad alignments using CD TIMIT models

4. Discussion
phoneme-constrained training algorithm consistently im-

ed phoneme labeling in our experiments, particularly when
training and test set are matched. It also reduced the “gap” in
ormance between context-dependent and context-independent
els for labeling, though the context-independent models still
orm better. This does not necessarily imply that context-
ndent models are not useful; it may be that they are simply
fitted to the data, given the small size of the datasets used.
results on the “cross-labeling” task seem to confirm this.
Initially, it appears that using phoneme-constrained training
ades performance for phoneme recognition tasks. There
two possible explanations for this; either the human-labeled
eme boundaries are suboptimal for training models for recog-
n, or the training process is overly constrained, leading to in-
r estimates of the model parameters.
To test this, we ran a “bootstrapping” experiment, where initial
ext-independent models with a single Gaussian per state were
ed using unconstrained Baum-Welch, and the resulting Viterbi
eme segmentations were then used to constrain the context-
ndent and multiple-Gaussian training. The results of this ex-

ment are shown in Table 4. In addition to TIMIT, we also
ied this technique to the Wall Street Journal connected-word
tion task, using the phone segmentations produced through

ed recognition using the initial context-independent models
a multiple-pronunciation dictionary.

Dataset Model PER/WER (%)

TIMIT Baum-Welch 31.64
TIMIT bootstrap 31.25
TIMIT constrained 34.13
WSJ0 (devel5k) Baum-Welch 8.64
WSJ0 (devel5k) bootstrap 8.98
WSJ0 (test5k) Baum-Welch 11.11
WSJ0 (test5k) bootstrap 11.97

ble 4: Bootstrapping constrained context-dependent models

The more or less comparable performance here seems to in-
te that it is the human-labeled phoneme boundaries, rather
any data sparsity problem, which lead to poorer recognition

ormance when phoneme-constrained training is used. How-
, since the initial unconstrained models are used to initialize
context-dependent training, this may be providing some ad-
nal robustness in parameter estimation. Also, forward eval-



uation more frequently fails to reach the final state in phoneme-
constrained Baum-Welch, thus reducing the effective amount of
training data. This is a particularly serious problem for datasets
such as F2B which contain very long utterances.

5. Conclusion
The phoneme-constrained training technique appears to improve
the performance of phoneme segmentation, particularly in the case
where the training and test data are matched. On the other hand,
it does not improve the accuracy of phoneme or connected word
recognition, though with the bootstrap method, it does not severely
degrade them either.

In another apparent duality, it is evident that different training
techniques for HMMs are required for the segmentation vs. recog-
nition tasks. Context-dependent models and state tying do not ap-
pear to be effective for phonetic segmentation. Using phoneme-
constrained training mitigates their negative effects somewhat,
though context-independent models are still superior, both in ac-
curacy and efficiency of training and segmentation.

In future work, we plan to investigate refinements to the boot-
strap training technique. By dumping Viterbi alignments automat-
ically from the Baum-Welch estimation program, it should be pos-
sible to eliminate several steps of training. We also intend to inves-
tigate the evolution of the optimal phone boundaries across itera-
tions of training, to determine if there is some point at which they
can be fixed in place without degrading the recognition accuracy
of the resulting models.
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