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{mcasar,adrian}@gps.t

Abstract
This paper proposes a double layer speech recognition and utter-
ance verification system based on the analysis of the temporal evo-
lution of HMM’s state scores. For the lower layer, it uses standard
HMM-based acoustic modeling, followed by a Viterbi grammar-
free decoding step which provides us with the state scores of the
acoustic models. In the second layer, these state scores are added
to the regular set of acoustic parameters, building a new set of
expanded HMMs. Using this expanded set of HMMs for speech
recognition a significant improvement in performance is achieved.
Next, we will use this new architecture for utterance verification
in a “second opinion” framework. We will consign to the sec-
ond layer evaluating the reliability of decoding using the acoustic
models from the first layer. An outstanding improvement in perfor-
mance versus a baseline verification algorithm has been achieved.

Index Terms: speech recognition, HMM acoustic modeling, state
scores, utterance verification.

1. Introduction
A widely-used type of speech recognition system is based on a
set of so called acoustic models that link the observed features
of the voice signal with the expected phonetics of the hypothe-
sis sentence. The most usual implementation of this process is
probabilistic, namely Hidden Markov Models [1]. A HMM is a
collection of states with an output distribution for each state, de-
fined in terms of a mixture of Gaussian densities. These output
distributions are generally conformed by the direct acoustic vector
plus its dynamic features (namely, its first and second derivatives),
plus the energy of the spectrum. These dynamic features are the
way of representing the context in HMM. However, although us-
ing such augmented feature vectors significantly improves perfor-
mance, current speech recognition systems still don’t provide con-
vincing results when conditions are changeable (noise, speakers,
dialects, ...).

We propose a two-layer speech recognition architecture divid-
ing the modeling process into two levels and training a set of HMM
for each level. References to other layered architectures for speech
recognition [2], or meta-models [3] can be found in the literature.

Recognition is not our only goal. Every time a recognized
word sequence is considered there is, inherently to it, some degree
of uncertainty about its correctness. Therefore, it is necessary to
build up a measure of how corresponding to the input utterance is
the resulting word sequence. From this measure, a decision can be
taken on whether to consider the output as correct or incorrect.
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The correctness of recognition results, given either alterna-
hypothesis models or an N -best algorithm, has been broadly
ied by several authors. Moreover, verification can be imple-
ted using a “second opinion” approach [4], the correctness of
decoded hypothesis determined by comparing the results of
recognition systems for consensus. One variant of this ap-
ch could be using an analysis of the recognition process itself
e second opinion. Using the two-layer architecture proposed
n be consigned to the second layer the evaluation of the relia-
y of the models from the first layer.
The paper is organized as follows: first in section 2 we in-
uce our proposal for modeling HMM temporal evolution us-
state scores, and its implementation into a double layer speech
gnition system. In section 3 we deal with utterance verifica-
, presenting a second opinion based approach using the layered
itecture defined. In section 4 the experiments to test the perfor-
ce of our approach are presented, together with the databases
baseline systems for each task. General conclusions about this
k are presented on section 5.

Modeling HMM temporal evolution using
state scores

andard HMM based modeling feature vectors depend only on
states that generated them. Context is represented by the dy-
ic features which, generally, do not model long-term varia-
s. We present a method to incorporate context into HMM by
idering the state scores obtained by a phonetic units recog-
r. These state scores are obtained from a Viterbi grammar-free
ding, and added to the original HMM, obtaining a set of “ex-
ed” HMM. A similar approach was used in [5] integrating the
scores of a phone recognizer into the HMMs of a word rec-

zer, and using state-dependent weighting factors.

Mathematical Formalism

andard SCHMM the density function bi(xt) for the output of
ature vector xt by state i at time t is computed as a sum over
odebook classes m ε M :

bi(xt) =
X
m

ci,m · p(xt|m, i) ≈
X
m

ci,m · p(xt|m) (1)

In [5] probability density functions are considered which make
ssible to integrate a large context xt−1

1 = x1, . . . , xt−1 of fea-
vectors which have been observed so far, into the HMM output
ities. For that purpose, a new hidden random variable l (class
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label) corresponding to phone symbols is introduced, which is a
discrete representation of the feature vectors xt−1

1 . Thus, Eq. (1)
is expanded and the output probability is defined (see [5]) as:

bi(xt|xt−1
1 ) =

X
m,l

p(xt|l, m, i) · P (l, m|i, xt−1
1 )

≈
h X

m

ci,m · p(xt|m)
i
·

h X
l

P (l|i)P (l|xt−1
1 )p(xt|l)

i
(2)

In our case, we don’t want to introduce the modeling of the
context for each feature vector into the HMM output densities, but
to create a new feature modeling the context. So, a new probability
term is defined:

b′i(xt) =
X

l

P (l|i)P (l|xt−1
1 )p(xt|l) ∝

X
l

P (l|i)P (l|xt
1) (3)

This is obtained by applying Bayes’ rule to P (l|xt
1):

P (l|xt
1) = P (l|xt, x

t−1
1 ) =

p(xt|l, xt−1
1 )P (l|xt−1

1 )

p(xt, x
t−1
1 )

And, given that class l is itself a discrete representation of fea-
ture vectors xt−1

1 , we can approximate p(xt|l, xt−1
1 ) ≈ p(xt|l).

Also, p(xt, x
t−1
1 ) is a constant in its evaluation across the differ-

ent phonetic units, so P (l|xt
1) ∝ p(xt|l)P (l|xt−1

1 ).
P (l|i) from Eq.(3) is estimated during the Baum-Welch train-

ing of the expanded set of models, and P (l|xt
1) corresponds to the

state scores output obtained by the Viterbi grammar-free decoding.
We can see that, when combining bi(xt) for each spectral fea-

ture and b′i(xt) for the phonetic unit feature, the joint output den-
sities are equivalent to Eq.(2).

2.2. Implementation

Figure 1 illustrates the double layer architecture implemented. We
use a standard HMM-based scheme for the lower layer. From the
acoustic models obtained, the phonetic units recognizer performs a
grammar-free decoding, providing us with the current most likely
last state score for each unit. This process can also bee seen as a
probabilistic segmentation of the speech signal, keeping only the
last state scores associated to the unit with the highest accumulated
probability.

Different units were tested with the phonetic units recognizer,
obtaining best performance (for digits recognition) working with
semidigits as acoustic units. Consequently, labels l will represent
last states of semidigit models and the density value can be com-
puted as the probability that the current state st of a semidigit
model is equal to l. Thus, semidigit last state scores output will
be our new parameter to be added to the original parameter set.

In the upper layer, the new set of expanded HMM is built,
adding the new parameter (state scores probability) to the original
features (spectral parameters). This way, five parameters are con-
sidered henceforth for further training and decoding. As in [5], we
will introduce a weighting factor w to control the influence of the
state scores information, regarding the spectral parameters. How-
ever, we will work with a global weighting factor for the new pa-
rameter (not state-dependent), testing different values in the search
of an optimal empirical weight.

Results obtained with the new recognition architecture are
summarized in table 1, achieving a slight improvement in perfor-
mance. However, this approach is regarded keeping in mind our
long-term target: obtaining a reliable second opinion for utterance
verification based on the analysis of HMM temporal evolution.
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re 1: Training and recognition schemes used for the double
r recognition system.

Analysis of HMM temporal evolution for
utterance verification

e able to consider a second opinion, it is mandatory to have a
in confidence about its reliability. In our approach we are not

g a second independent opinion to validate the output of the
em, but analyzing the coherence of the recognition by means
second decoding. The expanded HMM set built contains both
riginal spectral parameters plus the state scores parameter that

be seen as a model of the HMM temporal evolution. Therefore,
an compare the output of decoding using the expanded HMMs
at of a first decoding using regular acoustic models. If the
outputs differ, it means the temporal evolution of the models
presents some incoherence and, thus, the outputs are probably

ng (and therefore refused). If otherwise equivalent, they are
osed to be right (and accepted).

The architecture proposed for recognition and verification,
esented in figure 2, relies in a double procedure. Once the two
ding outputs are generated, they are compared for consensus
classified following a sentence based criterion as accepted or
sed. To evaluate the performance of this decision, sentences
been tagged in four categories: exact when correctly accepted

he verification step, error when incorrectly accepted, detected
rrectly refused and rejected when incorrectly refused. In order
o this taggin both recognition outputs were previously evalu-
classifying the sentences as correct or incorrectly recognized.

n, detected sentences will be those incorrectly recognized only
he first recognizer, rejected the ones incorrectly recognized
by the second, exact sentences those correctly recognized by
decodings, and error sentences the ones incorrectly decoded

oth recognizers.

The state scores parameter weighting factor w will have a rel-
t paper in the utterance verification performance, as it will

ly to give more or less importance to the temporal evolution of
M states.

The decoded output will be in the shape of a word string con-
ed by a chain of recognized words. A first string level filtering

e can be performed before comparing the two outputs, making
st acceptance/rejection decision of the hypothesis made by the



recognizer. This stage consists on filtering the two decoding out-
puts using several task-dependent rules (i.e. sentence length, pres-
ence of out-of-vocabulary words, etc.). Sentences rejected on this
previous basis will be tagged as garbage. In the following sections
we present some results for different experiments with and without
this string filtering stage.

verified
output

speech
input

Verification
Viterbi

Viterbi
Viterbi

Grammar-Free
+

HMM_1

HMM_2

Figure 2: Recognition and verification scheme of the utterance ver-
ification system based on the analysis of HMM temporal evolution.

4. Evaluation experiments
4.1. Databases

Experiments have been developed using two different databases.
First, the Spanish corpus of the SpeechDat and SpeechDatII
projects [6] has been divided into three sets: a training dataset,
a developing dataset (for training the HMM of the second layer),
and a testing dataset. This database consists on recordings per-
formed over both fixed and mobile telephone networks, with a to-
tal of 4000 speakers for the fixed corpus, and 1066 speakers for the
mobile set of recordings.

The results from the experiments using this first testing dataset
have been used for selecting the best configuration of the new sys-
tem and, when necessary, tuning the parameters used. Afterwards,
all the models have been tested with an independent database ob-
tained from a real telephone voice recognition application, hence-
forth DigitVox. It contains 5317 sentences with identity card num-
bers (8 digit chains) recorded in noisy conditions. Experiments de-
veloped using this database will test the independence of our mod-
els, thus approaching to similar conditions as those faced when
recognizing unknown speakers in a changeable environment.

4.2. Reference speech recognition system

Our reference speech recognition system is the semi-continuous
HMM based system RAMSES [7]. The main features of this sys-
tem are:

• Speech is windowed every 10ms with 30ms window length.
Each frame is parametrized with the first 14 melfrequency
cepstral coefficients (MFCC) and its first and second deriva-
tives, plus the first derivative of the energy.

• Spectral parameters are quantified to 512 centroids, energy
to 64 centroids.

• Semidigits are used as HMM acoustic units. 40 semidigit
models are trained, plus one noisy model for each digit,
modeled each with 10 states. Silence and filler models are
also used, modeled each with 8 states.

• For decoding, a Viterbi algorithm is used implementing
beam search to limit the number of paths. Frames are quan-
tified to 6 centroids for spectral parameters and 2 for energy.
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HMMs trained by this system will be used as acoustic models
e first layer of our layered architecture. Moreover, recognition
lts using this original set of HMM will be considered as our
line for speech recognition experiments.

Speech recognition experiments

t chain recognition has been taken as our working task for test-
speech recognition performance, as this will be the target task
tterance verification experiments. With the aim of selecting
est configuration, we have performed an analysis of the con-
tion of the new parameter by building several acoustic models
different state scores’ weighting factor w. Table 1 summa-
the results obtained with the DigitVox database.

configuration Sentence Word
system w recognition rate recognition rate

baseline - 93.304 % 98.73 %

1 93.191 % 98.71 %
layered 0.5 93.605 % 98.80 %

0.2 93.699 % 98.80 %

Table 1: Recognition rates using expanded HMMs.

Performance obtained by our system slightly overcomes the
line, specially when weighting the probabilistic state scores
ributions for the new models. Still, this new recognition ap-
ch should be regarded keeping in mind our main target: ob-
ng a reliable second opinion for utterance verification.

Utterance verification baseline system

system has been compared to a standard verification algorithm
ing on phone-based filler models. This method [8] is based in
ormalization of the scores output by the recognizer by means
phone-based decoding search. The phone decoding uses a
ork of unconnected phonemes constrained only by phone se-
ces characteristic of the language without respect to the cur-
lexicon or language model. Once normalized, these scores
become a measure of an overall goodness of recognition by
iding an estimate of the acoustic match of the phone models
e input unconstrained word or word-sequences models.
Phone-based filler models have proved to perform better than
r vocabulary independent approaches, as word-based filler
els, or anti-models (see [9]). They can be outperformed by
e complex solutions like feature transformation models or
ce-based combination models, but at the cost of being opti-
d for each specific recognition task and environment. Our
, however, is to find a verification solution that doesn’t need
tional tuning.

Utterance Verification experiments

eriments have been carried out using DigitVox testing
base, which is completely independent from the one used for
ing the models and tuning the parameters. This promises ver-
tion results not conditioned by an over-training of the param-
neither by adaptation to the speech recordings.

Let us define (as in [10]) the TRR (True Rejection Rate) as
rate between the number of incorrect hypothesis detected by
erification system (correctly refused), and the total number of
rrect hypothesis: TRR = D/I . Then, the FRR (False Re-
on Rate) is the rate between the number of correct hypothesis



Baseline, with different rejection thresholds (r)

r Exact Error Detec. Rejec. TRR FRR

15 92.55 4.78 1.66 1.02 25.78 1.09

30 89.62 3.10 3.33 3.95 51.79 4.22

80 75.19 1.78 4.69 18.34 72.49 19.61

Layered system, with different weighting factors (w)

w Exact Error Detec. Rejec. TRR FRR

0.2 92.46 4.14 2.78 0.62 40.17 0.67

1 91.84 3.59 3.33 1.24 48.12 1.33

5 84.03 1.69 5.23 9.05 75.58 9.72

Table 2: Sentence verification results without string filtering (in %)

rejected by the system (incorrectly refused) and the total number
of correct hypothesis: FRR = R/C.

In terms of the TRR and FRR measures, a ROC curve (Re-
ceiver Operating Characteristic) [11] is a curve that shows the TRR
versus the FRR for every threshold level used, expressing the latest
in the x axis. Depending on the curve obtained we can evaluate the
performance of the verification system.

By modifying the weighting factor w given to the new param-
eter in the expanded HMM set we will be modifying the perfor-
mance of the second decoding. This will be used to obtain differ-
ent behaviors of the verification system. Table 2 shows the results
obtained for sentence verification using different values of w with
our layered architecture, compared to results from the baseline ver-
ification algorithm. A very performant correct recognition rate is
obtained for a relatively low error rate (w = 5), while keeping a
reasonable rejection rate. On the other hand, baseline verification
performance directly relies on the rejection rate allowed. In our
approach, a weighting factor ≥ 1 implies giving more confidence
to the temporal evolution of HMM states, at the cost of increasing
the error probability. Figures 3 and 4 show the ROC curve repre-
senting TRR vs. FRR values for both verification systems, with
and without the string filtering step.

Figure 3: TRR vs. FRR without string filtering for both systems.

5. Conclusions
Throughout this paper we present some experiments carried out
using a double layer speech recognition and utterance verifica-
tion approach based on the analysis of the temporal evolution of
HMM’s state scores.

Speech recognition performance using the layered architecture
is slightly better than with our baseline system, although compu-
tational cost increase becomes a drawback. However, when using
this layered architecture for utterance verification following a “sec-
ond opinion” approach, results become high-flying. Appart from
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igure 4: TRR vs. FRR with string filtering for both systems.

tter TRR vs FRR behavior, our verification approach offers a
performant correct recognition rate quite a low error rate
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“Context-dependent output densities for Hidden Markov
Models in speech recognition,” Proceedings of European
Conf. on Speech Technology, (EUROSPEECH), 2003.

Moreno,A., and Winksky,R., “Spanish fixed network speech
corpus,” SpeechDat Project. LRE-63314.

Bonafonte,A. et alter, “Ramses: el sistema de re-
conocimiento del habla continua y gran vocabulario desar-
rollado por la UPC,” VIII Jornadas de Telecom I+D, 1998.

Young,S.R., “Detecting misrecognitions and out-of-
vocabulary words,” Proceedings of IEEE Int. Conf. on
Acoustics, Speech and Signal Processing (ICASSP), vol. I,
pp. 21–24, 1994.

Jiang,L., and Huang,X.D., “Vocabulary-independent word
confidence measure using subword features,” Proceedings
of IEEE Int. Conf. on Spoken Language Processing (ICSLP),
1998.

Sanchis,A., “Phd thesis. Estimation and application of con-
fidence measures for speech recognition (in spanish),” Uni-
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