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Abstract 
This paper presents and discusses keyword spotting methods for 
searching in speech. In contrast with searching in text, the 
searching in speech or generally in multimedia data still 
represents a challenge. The aim of the paper is to present a 
keyword spotting (KWS) method based on a large vocabulary 
continuous speech recognition (LVCSR) system, based on 
phonetics decoder, and keyword spotting using a filler model. 
All the methods are evaluated and compared from various points 
of view – speed, quality, requirements on training data and so 
on. All experiments are done using a telephone-quality speech 
corpus. Furthermore, this paper presents a new block decision in 
filler model-based keyword spotting which brings the speedup 
of decision together with better detection.  
Index Terms: keyword spotting, searching in speech, speech 
recognition, LVCSR, filler model, acoustic baseform

1. Introduction 
Keyword spotting is a special branch of automatic speech 
recognition dealing with detecting a limited number of words in 
an utterance. This paper discusses a statistical and HMM-based 
approach to keyword spotting.  

The problem of detecting a limited number of keywords can 
be solved in three major ways. These approaches are presented 
here, and their advantages and disadvantages are considered. 
The most obvious approach is to use a large vocabulary 
continuous speech recognition system to produce a word string, 
and then to search for the keyword in this word string. 
Theoretically, this is the best way, but there are problems with 
out-of-vocabulary words, false starts, hesitations, repetition, and 
other irregularities. The second presented approach is based on 
analyzing the output of the phonetics decoder – acoustic 
baseform (ABS).  

The third, new approach, which combines the filler model 
with the confidence measure approach, is presented here. We 
evaluate the filler model score to obtain a normalization factor 
simultaneously with a keyword score. This normalization makes 
the algorithm independent of the keyword’s phoneme 
composition. In order to decide if a keyword was or was not 
spoken, a normalized score of the keyword (KWNS) is compared 
with a predefined threshold. Furthermore, the block decision is 
introduced. With this approach, the decision is not carried out in 
each decoding time frame, but only after the token stored in the 
last keyword state is changed. This approach allows more 
information to be used in a decision; in addition to KWNS, other 
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ues, such as the length of the keyword, can be considered in 
 decision. 

2. System Overview 
 system is speaker-independent and is based on a statistical 
roach. It comprises a front-end, an acoustic model, and a 
oding block. The front-end and acoustic model are the same 
all experiments, like training/testing data. 

. Front-end 

 speech signal is digitized at 8 kHz sample rate and 
verted to the mu-law 8bit resolution format. Then the pre-

phasized acoustic waveform is segmented into 25 
liseconds frames every 10 ms. A Hamming window is 
lied to each frame and static PLP cepstral coefficients 
P_CCs) are computed. Then delta (first order derivatives) 
 delta-delta (second order derivatives) PLP_CCs are 
ulated and appended to the static PLP_CCs of the speech 
e. 

. Acoustic model 

a basic speech unit of the recognition system a triphone is 
d. Each individual triphone is represented by a 3 state left-to-
t HMM with a continuous output probability density 

ction assigned to each state. Each density is expressed as a 
ture of multivariate Gaussians, where each Gaussian has a 

gonal covariance matrix. The number of mixture components 
each state was obtained experimentally.  
Since a variety of noise sounds, e.g. loud breath, click on 

 microphone and noise of a telephone channel can appear in 
utterance, a set of noise HMM models was introduced and 
ned in order to capture these noise sounds. 

. Decoding 

he scope of this paper the term “score of a state s of a HMM 
del m in time t” is considered as the cumulative score, 
oting the minus-log-likelihood of generating the beginning 
the observation vector sequence up to the time t given the 
imal (in the sense of Viterbi decoding) state sequence which 
s at time t in state s. For example, if the probability density 
1, o2, …, ot q1m, q2m, …, qtm) that the sequence of 
ervation vectors o1, o2, …, ot is generated by the HMM state 
uence   q1m, q2m, …, qtm of the HMM model M, then the 
re s(qtm, t) of the state qtm in time t is  log(p(o1, o2, …, 
q1m, q2m, …, qtm)). The transition cost and self loop cost are 
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defined as minus-log-likelihood of transition probability and 
minus-log-likelihood of self loop probability, respectively. 

2.4. Training/testing data 

To evaluate the performance and reliability of the proposed 
keyword spotting systems, the following experiments were 
provided. The telephone speech corpus (TQSC) was used. Each 
speaker uttered at least 40 sentences. These sentences were 
spoken by native Czech male and female speakers, and contain 
a large number of silence parts and noises. The corpus (1050 
speakers) was divided into three groups. The acoustic models 
were trained from 1000 speakers. 33 speakers were used for 
training the decision module, and 16 speakers were used for all 
tests. 

From 832 test sentences (duration 3948.94 sec) containing 
3446 different words 328 keywords were selected with the 
following limitation: the minimal length of a keyword was three 
phones, and the selected keywords had to differ in more than 
two phones from each other. The total number of occurrences of 
keywords in the test sentences was 381. 

The performance of the keyword spotting system was 
evaluated by the detection rate (DR) and the false alarms (FA) 
defined as follows: 

 [%] 100   [% / ] 100        (1)

 [1/ / ]     ,              (2)
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where NCORRECT and FACOUNT denotes the number of correct 
detections and false alarms in a spotting result, respectively. 
NKW, KWCOUNT, and DURATIONTEST are the total occurrence of 
the keywords in the tested corpus, the number of different 
keywords, and the total duration of the tested speech corpus in 
hours, respectively. 

The FOM (Figure of Merit) value was also computed. The 
FOM is defined as the average detection rate from 0 to 10 
FA/kw/h (false alarms per keyword per hour). The equal error 
rate (EER) was computed to make results comparable. The EER
is defined as an intersection point between the false alarm curve 
and the DR−1  curve (false rejection curve). 

3. Keyword spotting 

3.1. Filler model approach 

We present a novel method which takes advantage of the filler 
model and confidence measure based keyword spotting [1]. We 
evaluate the filler model score to obtain a normalization factor 
simultaneously with a keyword score. This makes our decision 
algorithm independent of the keyword phoneme composition. 
The scheme of the decoding block is in Figure 1. 

All keywords are represented by concatenation of their 
triphone models, with full left and right contexts. The filler 
model is constructed as a set of HMM models connected in a 
parallel way. The phoneme bigram language model is used. The 
influence of the phoneme language model is discussed in [2]. 

The filler model is placed in front of the keyword models, so 
the start state of each keyword is linked with the output of the 
filler (see Figure 1). If the filler to keyword (F2K) transition is 
performed, then the transition time t = tF2K, the best score of the 
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d states of the filler model FMBestScore(tF2K), and the score 
s1(i, tF2K) are stored in the first state of the keyword i. During 

 Viterbi decoding the stored values are propagated through 
 keyword model i until they are replaced with a token which 
 a better (i.e. lower) score KWsk(i,  >tF2K) or reach the last 
e of the keyword i. 
The filler model and keyword models are decoded via 

erbi search supported by the token passing feature [3]. The 
 description of the decoding process is given in [1]. 
The aim of the decision module is to reject or accept a 
word hypothesis if a given keyword i ends in the time t. Two 
thods of decision were implemented. The first one, frame–to–

e (F2F) decision, was introduced in [1].  
The second one, block decision (BD), is carried out only in 

 time (changing time) when the record ( )),(( tist lastFTK

))),((( 2 tisteFMBestScor lastKF ) stored in the last keyword 

e is changed. Between two changing times there is a history 
evolution of the last keyword state score and a history of 
lution of the best filler model state score. From both 
ories there are used for the decision these values: length of 
 phonetic transcription of the keyword, minimal value of 
othed keyword normalized score SKWNS(i,t), and time of 
 minimal value. The SKWNS(i,t) is defined as follows: 

2

2( ( ( , )))

( , 1) ( , )
( , )                           (3)

2
( , ) ( ( ( , ))) 

( , )      (4)
( )

last F K last

F K lastFMBestScore FMBestScore t s i t

SKWNS i t KWNS i t
WNS i t

KWs i t FMBestScore t s i t
NS i t

t
=

− +=

−
−

se values form a feature vector x for each changing time. 
s vector is classified by a linear discriminative hyperplane 
) = wTx + w0 = 0) into two classes: keyword occurrence 
othesis acceptation × rejection. The distance from the 
riminative hyperplane is used as a certainty factor of 

sequence
 of 

keywords
 Keyword 
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Decision 
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max(…) 

Figure 1. Decoding block architecture.

Table 1. Filler model approach keyword spotting results. 

method F2F BD 

EER [%] 22.31 15.58 

FOM [%] 93.61 97.80 

DR [%] at 0.1 FA/h/kw 73.75 81.78 

DR [%] at 10 FA/h/kw 96.23 99.48 



keyword detection. The hyperplane can be shifted up or down 
by threshold value to get different detection rate and false 
alarms rate. The results are presented in Table 1. 

3.2. Phoneme recognition approach 

As a phoneme recognizer we use a filler model from our 
keyword spotting system described in Section 3.1. The filler 
model is designed to produce a sequence of phones (acoustic 
baseforms – ABS). 

The method of “moving window” is commonly used for 
detecting a keyword from an acoustic baseform (ABS) [4]. The 
beginning of the window in scanned ABS is gradually shifted 
one char more until the rest of the ABS sequence is at least as 
long as the minimal value of the desired keyword. In each step, 
the keyword is compared with n (n=max-min) parts of the ABS 
sequence. The minimal (min) and the maximal (max) length of 
the selected part should be figured from the length of the desired 
keyword. For instance, the minimal value is a half of the value 
of the keyword and the maximum value is one and a half of the 
value of the keyword. To compute the distance of two words, 
the DTW algorithm is used. If the distance divided by keyword 
length is lower than the decision threshold, the keyword is 
detected.  

The distance of two phonemes d(A,B) is chosen primarily 
according to prior phonetic knowledge. To improve the match 
of text transcription and the recognized ABS, a confusion table 
was implemented into the DTW algorithms. In the confusion 
table there are stored probabilities of two phoneme substitution. 

To speed-up the algorithm the basic method was modified. 
For each keyword and input utterance (ABS sequence) the DTW 
function is computed only once. The standard DTW algorithms 
have to be modified. There is not only one beginning (position 
1,1) for the warping function, but the path can start at every 
position in the first row in the table (ABS sequence).  

I 

d(A(1),B(j)) 
         +g(1,j-1) 

                       /   g(i,j-1)   
d(A(i),B(j)) + |    g(i-1,j-1) 
                       \   g(i-1,j) 

1 g(i,1) = d(A(i),B(1)) 

B
(k

ey
w

or
d)

   
 j

 1     J 
          A (recognized ABS)                                   i 

If the value in the last row (I) divided by the keyword length 
(I) is lower than the decision threshold, then the keyword is 
detected at this position (ends at this position). To get the 
beginning time of the keyword, the back propagation method 
was implemented. 

The filler model (phoneme recognizer) is evaluated by 
phone recognition accuracy (Acc) and correctness (Corr). 
Table 2 presents the results of phoneme recognition for a 
triphone model a with an implemented bigram language model. 
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Table 2. Phoneme recognizer results. 

Acc [%] Corr [%] 

67.33 72.44 
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 results of keyword spotting are presented in Table 3. 

. LVCSR approach 

oretically, the best way for keyword spotting is LVCSR 
ed approach, because besides an acoustics model we use a 
guage model as well. The second advantage is that this 
roach is easy to implement. The LVCSR system produces a 
uence or lattice of words, and then we only search for a 
word in this sequence/lattice. 
One known problem arises in out-of-vocabulary words 
inly unique names of people, companies, places, …), false 
ts, hesitation, repetition, etc. The second problem is 
sented by the potential preparation of an appropriate 
guage model. In many languages (especially Slavic 
guages) the language model for read speech is different from 
 language model of spontaneous speech [5]. The read speech 
guage model can be build from large amount text data for 
mple downloaded from newspapers web sites. But the 
ntaneous language model has to be built from manually done 
scription of conversations, public debates and discussion. 
 To analyze the influence of the type of the language model, 

 following experiments were performed. We used three 
guage models: 
• LM1 – ideal language model, built from all training 

and testing utterances. This LM was used to find out 
theoretically the best results, 

• LM2 – language model from a different area than 
testing data (survivors of the Holocaust) and different 
type of speech (spontaneous, very emotional) – to test 
the theoretically worst results,  

• and LM3 – real language model, the same domain area 
(economic news) and the same type of speech (read 
speech), not containing train and test sentences. 

The results (accuracy (Acc) and correctness (Corr)) for all 
guage models together with test data perplexity (ppl) and 
V are presented in Table 4. For all performed keyword 
tting experiments only the best sequence of words was used 
output of the LVCSR system. The keyword spotting results 
 given in Table 5.  

Table 3. Keyword spotting from ABS. 

FOM [%] 61.41 

EER [%] 47.45 

DR [%] at 0.1 FA/h/kw 40.84 

DR [%] at 10 FA/h/kw 70.16 

Table 4. Filler model approach keyword spotting results. 

language model LM1 LM2 LM3 

words 39441 41687 40109 

ppl 32.74 3717.17 699.16 

OOV [%] 0 17.19 7.77 

Acc [%] 83.96 50.25 55.00 

Corr [%] 89.44 51.63 67.31 



4. Conclusions 
This paper presents new keyword spotting system taking 
advantage of both the filler model and the confidence measure 
based approaches. The block decision results in better detection 
simultaneously with the speedup of the decision. The system is 
able to operate in real-time. The FOM is 97.8 %. The main 
advantage is the universality of this method; we can use it in 
different domain areas and for other languages without tuning 
the system. The second advantage is that we can simply shift the 
decision threshold to obtain a different detection rate and false 
alarm rate. 

The results were compared with two methods. The first 
method is an alternative method for keyword spotting using 
output of the phoneme recognizer (ABS). The advantage of this 
method is the possibility of division into two parts.  The first 
one is processed only once, and it generates a sequence of 
phones of input utterances. The second one is performed when 
the request of finding a keyword occurs. Processing a sequence 
of phones is up to 173 times faster than real–time (for 381 
keywords). Let us mention that for one keyword this method is 
up to 750 times faster than RT. Unfortunately, the FOM is only 
around 60 %. 

The third method used for keyword spotting is LVCSR 
based approach. By using an appropriate language model, the 
false alarm rate is lower by one order of magnitude at specific 
detection rate while the time of processing is the highest of all 
the presented methods. Without a language model, the LVCSR 
approach cannot reach as high a detection rate as the presented 
methods. The LVCSR approach works almost without false 
alarms, and is the best, if we do not require as high as possible 
detection rate. 

All the methods were compared to each other from the point 
of view of speed in Table 6. The processing time and the RT 
ratio are for all keyword (381). The ROC characteristics are 
presented in Figure 2. For the LVCSR approach there is only 
one value (we cannot set the system to get a different detection 
rate and a false alarm rate). For each language model the results 
are highlighted by a dashed line at the same level.
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Table 5. LVCSR based keyword spotting results. 

language model LM1 LM2 LM3 

DR [%] 88.19 55.38 69.82 

FA [1/h/kw] 0 0.028 0.028 

Table 6. Real time ratio. 

keyword spotting 
method  

FM ABS LVCSR 

processing time [s] 2705.5 22.8 18533.5 

RT ratio 1.46 173.20 0.215 
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