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Abstract
This paper examines the problem of estimating stream weights for
a multistream audio-visual speech recogniser in the context of a
simultaneous speaker task. The task is challenging because signal-
to-noise ratio (SNR) cannot be readily inferred from the acoustics
alone. The method proposed employs artificial neural networks
(ANNs) to estimate the SNR from HMM state-likelihoods. SNR
is converted to stream weight using a mapping optimised on de-
velopment data. The method produces an audio-visual recognition
performance better than that of both the audio-only and the video-
only baselines across a wide range of SNRs. The performance
using SNR estimates based on audio state-likelihoods is compared
to that obtained using both audio and visual likelihoods. Although
the audio-visual SNR estimator outperforms the audio-only SNR
estimator, the recognition performance benefit is small. Ideas for
making fuller use of the visual information are discussed.
Index Terms: audio-visual speech recognition, multistream,
stream weighting, SNR estimation, artificial neural networks

1. Introduction
Automatic speech recognition systems can achieve good perfor-
mance in noise-free conditions but this performance degrades dra-
matically in the presence of noise. Speech recognition is partic-
ularly challenging when the background noise is another speaker.
The difficulty of this condition arises for two reasons. First, speech
is highly non-stationary. When the target speaker is masked by an-
other speaker (the masker) the frame-based signal-to-noise ratio
(local SNR) varies over a wide range, e.g. from over +60 dB to -
60 dB. Even at high global SNRs local regions of the target speech
may be energetically masked. On the contrary, at low global SNRs
some frames may be dominated by the target speaker. Second, the
noise will be statistically similar to the target speech, making it
hard to distinguish between the two. Region of the signal that are
dominated by the masker will have similar acoustics to those that
are dominated by the target. This foreground/background confu-
sion contributes to what is known in the perceptual literature as
‘informational masking’ [1] which leads to difficulty in estimat-
ing the local or global SNR for the utterance. We attempt to deal
with both forms of masking using techniques based on the con-
ventional multistream approach to audio-visual automatic speech
recognition (AV-ASR).
As is well known, lip movements provide evidence of the

phoneme being spoken and hence they are associated with acous-
tic signal. Although visual speech may be ambiguous (e.g. /b/ and
/p/ appear identical), in noisy conditions the visual information
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help to disambiguate acoustically confusable phoneme pairs
. /s/ and /f/). Recognition performance can be made more ro-
by the integration of both the audio and visual information.

In the current work we use a state-synchronous multistream
roach to AV-ASR. Here, audio and visual features are treated
ynchronous streams. A hidden Markov model (HMM) is em-
ed in which each state generates both audio and video obser-
ons drawn from different distributions (i.e. audio and video
rvations are modelled as being independent given the state).
system can be trained on clean audio-visual speech. To make
bust to acoustic noise, at recognition time, the audio and vi-
likelihoods are combined using weights based on a measure
eir relative reliability. In the current work we attempt to esti-
e the stream weightings from HMM state-likelihood informa-
using artificial neural networks (ANN). We compare the per-
ance of ANNs trained on audio likelihoods and audio-visual
lihoods. The hypothesis is that the pattern of audio and vi-
likelihoods should distinguish between: local SNRs close to
here the acoustics match the models poorly; positive SNRs
re the acoustics match the models and are correlated with the
al information; and negative SNRs where the (masker) acous-
may match the models, but will correlate poorly with the tar-
s visual features. The audio-visual SNR estimator is expected
utperform the audio-only SNR estimator because the acoustic
lihoods alone are not sufficient for distinguishing between re-
s where the target matches the models (high SNR) and those
re the masker matches the models (low SNR).

The remainder of this paper is arranged as follows. Section
scribes the estimation of the audio and visual stream weights.
tion 3 presents the results of AV-ASR experiments based on a
ll vocabulary simultaneous speaker task. Section 4 presents
clusions and discusses possible directions for future work.

. Estimation of acoustic stream reliability
tate-synchronous multistream AV-ASR systems, an HMM is
ed that generates observations for both audio and the visual
ams. The integrated state emission score of the two-stream
M, P (ot|c), based on speech unit class, c, at time, t, is mod-
d as,

P (ot|c) = P (oa,t|c)
λa,t × P (ov,t|c)

λv,t (1)

re ot is the concatenated observation of audio and visual fea-
s, ot = [oa,t ov,t]. The exponents λa,t and λv,t, where
, λv,t ≥ 0 and λa,t + λv,t = 1, represent the weighting of
audio and visual components respectively.

The weighting parameter is related to the relative reliability of
audio and visual modalities, which in turn is dependent on the
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SNR for whole utterance (global SNR). In previous studies, Glotin
et al. [2] used voicing as a measurement of audio reliability. Garg
et al. [3] employed the N-best log-likelihood as an SNR indicator
to measure the modality reliability. Tamura et al. [4] estimated the
stream weight from the normalised likelihoods. However, in the
two speaker problem, all of these techniques will predict a high
audio reliability at times when the mixture is dominated by the
masker - times in which the audio reliability is actually low.

We too use likelihoods to estimate SNR, but we use likeli-
hoods from both audio and visual HMMs in the estimation. The
estimation is based on the fact that in regions of high local SNR,
the acoustic features are likely to be good matches to a small num-
ber of HMM states, whereas in places where the local SNR is
closer to 0 dB no single state will be a particularly good match and
the likelihoods will be ‘spread between states’ - i.e. the pattern of
log likelihoods across states will not have clear significant peaks.
There is thus an association between the pattern of likelihoods and
local SNR. However, in the speech-plus-speech case, a problem
arises if only the acoustic information is considered. In regions
of the signal where the masking talker dominates, the patterns of
log-likelihood can be similar to the patterns seen in clean condi-
tions – to the extent that the target and masker speaker fit equally
well to the speech models, the pattern of likelihoods is symmet-
rical around 0 dB local SNR. This confusion can potentially be
disambiguated using the visual likelihoods. We anticipate that, at
positive local SNRs, the visual and audio likelihoods will be con-
centrated in corresponding HMM states (e.g. if the state represent-
ing an audio ’f’ has a high likelihood then the state representing a
visual ’f’ should also have a high likelihood). Whereas, at nega-
tive local SNRs, the audio and visual likelihoods will generally be
concentrated in different HMM states because the masker’s speech
is not correlated with the target speaker’s lip movements.

Stream weight estimation proceeds as follows. First, two sets
of independent word-level HMMs are trained using synchronised
audio and visual features respectively. Both the audio and visual
HMMs output a total of N log-likelihoods per frame, where N is
the total number of states in the model sets (in our case N is 251).
Using standard word model HMMs some of these states will have
similar likelihood because the same phoneme (or viseme) may ap-
pear in different words, e.g. our task employs the alphabet words
in which the phoneme /iy/ occurs frequently. This could make
the difference between the distributions of likelihoods across states
for the clean and noisy cases less easy to characterise. To reduce
this problem likelihoods from similar states are averaged. To de-
termine which state to average across a standard state-clustering
technique is employed [5]. The appropriate degree of clustering is
determined by that which gives good recognition performance on
clean speech. This is done separately for the audio and the video
based HMMs. In the experiments reported in Section 3 the likeli-
hoods are averaged with 54 clusters for the audio HMMs and 18
for the video HMMs.

The relationship between the vectors of frame-based log-
likelihoods and local SNR is then learnt using a multi-layer per-
ceptron (MLP) with a single hidden layer. Target local-SNRs are
computed using prior information of the unmixed speech signals.
The mapping from log-likelihoods to local SNR is trained using
conjugate gradient descent. The audio-based MLP has 54 input
nodes (one for each averaged likelihood) and the AV-based MLP
has 72. The number of hidden units is optimised by observing the
errors between the calculated output and the target of a validation
data set. The MLP topology that produces the minimum error is
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cted. Training proceeds using either the log-likelihoods of the
io stream, or the concatenated log-likelihoods of both the audio
visual streams.

re 1: The flow diagram to measure the stream reliability using
artificial neural networks

The MLPs are trained to estimate the local SNRs given the
likelihoods. In theory these local SNRs could be mapped on
time-varying stream weight. However, in practise they are not
ly to be sufficiently reliable for this to produce a good result.
ead, local-SNR estimates for an utterance are combined with
easure of frame-based energy to produce a single global SNR
ate, SNRg

SNRg = 10log
10

 
nX

i=1

Ei

1 + Bi
/

nX
i=1

Ei · Bi

1 + Bi

!
(2)

re Bi = 10SNRi/10. The Ei and SNRi represent the ith

e energy and SNR respectively and n is the total number of
es in the utterance. Finally, the estimated global SNR is
ped onto a stream weight using an SNR to stream weight map-
that has been optimised using a set of development data.

3. Experimental results
Audio-visual speech corpus and feature extraction

eriments have been performed using the audio-visual Grid cor-
[6] which consists of high quality audio and video recording
tterances of the form indicated in Table 1 spoken by each of
peakers (sixteen female speakers and eighteen male speak-
. An example sentence is “bin red in c 3 again”. A total of
0 utterances were randomly selected from 10 different male
kers (350 utterances from each speaker) to train a gender de-
ent HMM model. For each utterance, 13 MFCC features
e extracted from the audio stream at a 100 Hz frame rate and
e were supplemented by their dynamic components to form
imensional audio feature vectors.

Table 1: Structure of the sentences in the GRID corpus.

VERB COLOUR PREP. LETTER DIGIT ADVERB

bin blue at a-z 1-9 again
lay green by (no ‘w’) and zero now
place red on please
set white with soon

In the current work we wished to study the the problem of
o-visual feature integration in isolation from problems of vi-
feature extraction. So to this end, prior speaker information
semi-automatic processes were employed to ensure that the
o features were of a consistent high quality. Visual feature ex-
tion was performed using a technique similar to that of Patter-
et al. [7]. For each speaker, 10 hand segmented video frames



were used to train separate 3-component Gaussian mixture mod-
els for the pixel RGB values in the lip region, and in the region
surrounding the lips. Then in each frame of a video sequence, a
Bayes’ classification of the pixels in the mouth region was per-
formed such that each pixel was labelled as either ‘lip’ or ‘skin’.
After some noise removal, the centre of gravity of the largest con-
nected region labelled as lip was computed. A box with an area
proportional to that of the estimated lip region was centred on the
lips. The image within this box was downsampled to 32 × 32
pixels, and then projected into feature space using a 2-D discrete
cosine transform (DCT) from which the 36-dimension low-order
coefficients were extracted as visual features. These were supple-
mented with their dynamic features to produce a 72 dimensional
visual feature vector. Linear interpolation was employed to upsam-
ple the visual stream from 25 fps to 100 fps to match the frame rate
of the audio stream.

Multistream word-level HMMs were employed to model the
41 words in recognition task’s vocabulary. These models contain
between two and ten states per word determined using a rule of 2
states per phoneme. A single state short pause model brought the
total number of states to 251. Each state is modelled using a 5-
component Gaussian mixture model for both the audio and visual
streams. Another 3100 utterances were also randomly selected
from the same set of ten male speakers and are mixed with 3100
masking utterances selected from ten female speakers at a range of
global SNRs. A forced-alignment was used to remove the initial
and final silence before mixing, and the shorter utterance of each
pair was zero-padded to the length of the longer one. These mixed
utterances were then randomly divided into three sets; 2000 were
used for the final performance test; 1000 were used to train the
MLPs, and the remaining 100 utterances acted as the validation
set to avoid overfitting.

3.2. A priori global SNR versus a priori local SNR

The mapping between stream weight and global SNR was opti-
mised using an exhaustive search, with results shown in Fig 2.

Figure 2: (a) the results of the exhaustive search (left) and (b)
the optimised mapping between global SNR and stream weight-
ing component (right)

The relationship between acoustic weighting components,
global SNRs and speech recognition accuracy is illustrated in Fig-
ure 2-a. The mapping between acoustic weighting components and
global SNRs (Figure 2-b) is extracted from Figure 2-a by looking
for the weight which maximise speech recognition performance at
each SNR. It can be observed that the weighting component of the
audio stream is reduced as global SNR decreases, as expected.

In the first experiment this mapping was applied to the a priori
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al SNR to compute a single stream weight per utterance, or to
a priori local SNRs to compute a separate stream weight for
frame. The speech recognition performance achieved using
e weights is compared in Table 2.

le 2: Comparison of speech recognition performance from
al SNR and from local SNR (%)

clean SNR20 SNR15 SNR10 SNR5 SNR0 SNR-10

bal SNR 96.40 94.16 91.17 86.11 79.87 76.72 73.96
cal SNR - 92.57 89.66 85.81 81.74 77.82 73.32

The recognition performance obtained using global SNR is
er than that obtained using local SNR at all SNR levels ex-
SNR5 and SNR0. The recognition accuracy obtained using
global SNR is 1.07% higher than that obtained from the lo-
NR when averaged across all noise levels. The expectation is
a time-varying stream weight should outperform a static one.
ure to see a significant benefit is perhaps an indication that the
mised mapping from global SNR to stream weight is not opti-
for local SNR. The results from a priori global SNR represent
pper limit against which to compare results using estimated
.

Audio versus audio-visual SNR estimates

second experiment attempted to estimate global SNRs from
M state-likelihoods using the methods described in Section 2.
multi-layer perceptrons were trained. One was trained us-
the state-likelihoods of the audio-based HMM as input, while
other used concatenated likelihoods from both the audio-based
video-based HMMs. Both neural networks were trained us-
around 600,000 frames of data with 60,000 frames employed
validation. Results for the AV systems are shown in Table 3
pared against audio-only and video-only baselines.

able 3: Comparison of speech recognition performance (%)

clean SNR20 SNR15 SNR10 SNR5 SNR0 SNR-10

MFCC 95.49 92.09 88.02 79.03 65.70 49.63 25.24
IDT36D 73.09 73.09 73.09 73.09 73.09 73.09 73.09
N-MFC 95.51 92.94 89.87 85.27 79.33 76.17 73.62
NN-AV 95.54 93.07 90.00 85.36 79.81 76.44 73.58

The first two rows in Table 3 show the baseline audio-only
CC) and video-only (VIDT36D) recognition performances re-
tively. These baselines are in agreement with previous studies
the visual stream producing significantly poorer results than
audio in low noise conditions. The video-only data is inher-
y ambiguous as many phonemes have similar visual appear-
. However, the video-only result is obviously not affected by
level of the acoustic noise and remains at 73.09%.
The last two rows are the recognition accuracy from the AV
em using the neural networks trained from either audio stream
lihood (ANN-MFC) or both audio and visual likelihood (ANN-
. It can be seen that, as expected, recognition performance of
V systems is better than that of both the audio-only and video-
systems across all SNRs. However, neither AV system quite
ches the performance obtained using the a priori global SNR
le 2). The results obtained using the AV SNR estimate (ANN-
are better than those obtained using the audio based SNR esti-
e (ANN-MFC). This is as expected as the AV system can learn



that acoustic confidence does not necessarily indicate high SNR -
i.e. if acoustic likelihoods appear confident, but the highest scoring
acoustic and visual states do not correspond, then we are probably
seeing the target but hearing the masker i.e. very low SNR. How-
ever, somewhat surprisingly, the performance gained by using the
AV weight estimation is small (compare ANN-MFC and ANN-AV
in Table 3).

3.4. Analysis of the estimated SNRs

As the foreground and background are acoustically similar al-
though the magnitude of the SNR may be well estimated, the sign
of the SNR may be ambiguous and hard to estimate correctly. The
final experiment investigated the extent of this effect. The two
MLP neural networks were retrained using the same dataset and
parameters as in the last experiment except the signs of the local
SNR were removed. During the testing stage, the estimated SNR
magnitude for each frame is combined with the a priori SNR sign
obtained using knowledge of the unmixed signals.

Table 4: Comparison of speech recognition performance between
different MLPs using a priori signs and estimated values (%)

SNR20 SNR15 SNR10 SNR5 SNR0 SNR-10

AV-EVCS 93.95 91.02 86.17 79.87 76.67 73.88
MFC-EVCS 93.92 91.07 86.19 79.85 76.65 73.91

The first row in the Table 4 is the recognition performance
from MLPs trained using both audio and visual likelihood and the
second row is the recognition accuracy from MLPs trained using
audio likelihood only. In both cases the estimated SNR magnitude
was combined with the known prior SNR sign. These results are
very close to the results from optimised global SNR and both of
them are better than that obtained without using the prior sign. The
small advantage obtained using the AV SNR estimates in Table 3
is no longer present - this is expected as the video information
in the AV SNR estimator is being used to distinguish +ve SNR
(target dominating) and -ve SNR (masker dominating), but in this
experiment the sign of the SNR has been provided a priori so video
information has a reduced role.

3.5. Discussion

The current work has been successful to the extent that, in the con-
text of a simultaneous speaker task, it has shown that, i) a static
stream weight can be used to combine audio and visual evidence
to produce an AV-ASR system whose performance is better that
of the audio or video alone, ii) it is possible to estimate the static
stream weight directly from the audio-visual data. However, at a
global SNR of 0 dB the AV speech recognition performance is only
marginally superior to the performance of the visual-only system.
A better integration would be afforded by a time-varying stream
weight that allowed the recogniser to fully utilise regions of the
target utterance where the SNR is temporarily high.

Providing a time varying stream weight requires accurately es-
timating local SNR. The estimates produced by the current system
are too noisy to be used directly. The largest problem has been en-
countered in the estimation of the sign of the SNR. Although the
audio-visual based estimator was designed to solve this problem
it only confers a small advantage. There is inherent ambiguity.
Many audio speech units have the same visual appearance, so a
masking phoneme may differ from the target phoneme, but still be
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sistent with the target’s lip movements. One solution would be
ase the estimates on longer time windows. However, this solu-
is problematic as the local SNR varies rapidly as a function of
, so the likelihoods generated in neighbouring frames may not
ndicative of the local SNR at the frame being considered. A
er approach may be to use acoustic constraints to identify brief
ods that appear to be dominated by a single speaker - these re-
s are typically voiced and can be located using pitch tracking
niques (see for example [8]). Then, for each ‘single source’
od, to estimate whether the acoustics are correlated with the
o signal and should therefore be treated as reliable, or are un-
elated and should therefore be ignored. These decisions could
ade reliably for any segment of sufficient duration.

4. Conclusions
paper has examined the problem of applying multistream
io-visual speech recognition techniques in a challenging simul-
ous speaker environment. It has been shown that in this condi-
a static stream weight parameter based on a global SNR esti-
e can be used to successfully integrate audio and visual infor-
ion. A technique for estimating the global SNR from audio and
al HMM state-likelihoods has been presented that produces
lts similar to those obtained using the a priori global SNR.
ever, it seems likely that better results could be achieved using
e-varying stream weight determined from an estimate of lo-
(frame-based) SNR. Research is needed to develop techniques
reliably estimating local SNR from the the audio and video
ams. Future work will look at estimating local SNR based on
e-segmentation of the acoustic signal.
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