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Abstract
We apply Long Short-Term Memory (LSTM) recurrent neural net-
works to a large corpus of unprompted speech - the German part
of the VERBMOBIL corpus. By training first on a fraction of
the data, then retraining on another fraction, we both reduce time
costs and significantly improve recognition rates. Contrastive re-
training on the initial vowel cluster fraction of the data according to
the Psycho-Computational Model of Sound Acquisition (PCMSA)
shows higher frame by frame correctness due to more sparseness
and the articulatory position of the sounds. For comparison we
show recognition rates of Hidden Markov Models (HMMs) on the
same corpus, and provide a promising extrapolation for HMM-
LSTM hybrids.
Index Terms: Bidirectional Long Short-Term Memory, re-
current neural networks, retraining on data fractions, Psycho-
Computational Model of Sound Acquisition.

1. Introduction
The human brain simultaneously filters all important information
out of different aspects, e.g. acoustics, prosody and phonotactics,
and adapts and compares this information to its inherent speech
database. Without any prior knowledge of the grammatical rules
of a language or a predefined language model1 the human brain
is capable of learning statistic regularities within speech and can
easily adapt its internal representations of the regularities once the
statistics change.

Most current Automatic Speech Recognition (ASR) systems
don’t handle all important information at a time. They use sub-
modules concentrating on one aspect of speech, e.g. providing
the phonotactics of a language in a Language Model, when build-
ing acoustic models or providing prosodic models for an extra
prosodic recognizer.

It would be desirable to retrain an Automatic Speech Recogni-
tion (ASR) system on new data without losing the benefits of previ-
ous learning. For example, it may be necessary to adapt quickly to
new input, or to use information gained from a previous task, e.g.,
recognizing read speech, in order to solve the next task, e.g., quasi-
spontaneous (= unprompted) speech. In task/domain independent
recognition, systems that are (pre-)trained under certain conditions
and/or certain dialogue specifications are required to adapt to ut-
terances recorded under different conditions or with different dia-
logue specifications. It has also become standard practice to train
Hidden Markov Models (HMMs) on multiple corpora, in order to
improve their robustness also with respect to new data. However,
methods for adapting HMM’s are complex and time-consuming

1Meant are here the grammatical rules which can be found in grammar
books and the kind of language models used in ASR. Both are defined by
humans. We do not refer to Chomsky’s Universal Grammer.
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Most modern systems use a hybrid of HMMs and maximum
lihood linear regression to adapt to new training material.
Artificial Neural Networks (ANNs) allow a more brainlike
roach: learn from scratch and let the learning process decide
ch information is important and how it has to be connected to
r already learned information. An ANN approach works quite

l for a small set of unfiltered information but dealing with large
ch corpora, ANNs seem to be overtaxed when trying to learn

information out of different aspects of speech. How can we
efit from the ANN brainlike approach also for a large amount
nformation? Is the division of a large speech corpus in small
sets of unfiltered information a solution? How can we sequen-
y add the learned information out of these different subsets
out loosing the already learned regularities?
In fact, ANNs lend themselves to a very simple form of re-
ing: train on one dataset, then continue training on another
out resetting the weights. Recurrent Neural Nets (RNNs) are
icularly promising for speech processing because they have
potential to learn a dynamic model of speech that incorporates
tiple time scales without using time windows or fixed time de-
. Unlike traditional RNNs, Long Short-Term Memory nets
TM) [2] can also handle long time lag correlations between
ts and errors, also in the context of speech applications [3].
y have already been successfully used for speech applications.
ent experiments with plain LSTM on speaker adaptation [4]
gest that retraining is fast and effective on small corpora, and
results of previous learning and generalization improve with

ining on randomly chosen subsets of the data. Recently, we ap-
d this approach to Bidirectional LSTM [5] and a large corpus
nprompted speech [6] with randomly chosen subsets. Retrain-
seems a reasonable solution of handling unfiltered information
arge speech corpora. But is there also any brainlike approach
orm the subsets for sequential retraining on different aspects of
ch?
A solution for the forming of subsets is to simulate the hu-
sound acquisition as we recently proposed in the Psycho-
putational Model of the Sound System Acquisition (PCMSA)
In this paper we retrain on a vowel subset of the VERB-

BIL corpus - the initial vowel contrast of the PCMSA - and
pare recognition results to a randomly chosen subset. The fol-
ing section briefly describes the VERBMOBIL data used for

LSTM and HMM experiments. Section 3 gives an overview
STM. Section 4 describes the experimental setup. Section 5
marizes the aspects of the Psycho-Computational Model of
Sound System Acquisition. Section 6 analyses the experimen-
esults of baseline and retrained LSTM for framewise phoneme
iction on a randomly chosen subset and the initial PCMSA
el subset. Section 7 provides an extrapolation of the frame-
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based results for a HMM-LSTM hybrid based on previous com-
parisons of framewise and phoneme error rates on various corpora
of read speech.

2. Corpus description
Our present investigation uses a database of unprompted speech-
the VERBMOBIL (VM) corpus [8].The VM corpus is divided into
VM1 and VM2. Both sets differ in recording conditions and tasks.
The corpus consists mainly of three language portions: German,
American English and Japanese. The German VM portion con-
tains sufficient speech data for training and testing (35136 turns1).
For this study only the German portion was used. The database-
scenario deals with scheduling appointments with a business part-
ner: real-life-situations with currently used speech. The “formal
situation” setup ensures that speech contains fewer and weaker re-
gional variants than it would contain if personal affairs were dis-
cussed.

The training (train), development (dev) and test (test) sets
currently used in our experiments on the VM corpus contain the
following constraints [6]: each speaker is allowed in only one
set (hard constraint), for each speaker there must be at least one
complete dialogue (to allow speaker adaptation algorithms to be
applied; hard constraint), speakers should be distributed equally
across sexes in all sets (soft constraint), recordings should be dis-
tributed equally across recording sites in all sets (to cover possible
accents preferences in one site; soft constraint).

The HMM system uses the full data for training and testing.
The LSTM classification network uses only one fourth of the train-
ing set in its baseline training, another fourth of the training set is
used for retraining. The full test set is used as described above.

The HMM phone recognizer was built up with the Hidden
Markov Toolkit [9]. It uses the above defined subsets and a bi-
gram trained solely on the training corpus.It was tested on the de-
velopment sets with the corresponding lexicon (total: 5540 lexical
entries). The acoustic models are based on 12 Standard MFCC +

Energy + velocity + acceleration (39), Diagonal covariance ma-
trices, 3-5 states per phoneme, 43 phoneme classes (extended Ger-
man SAMPA) + garbage + voice garbage + silence + laugh +

breath (48), Models initialized using the Munich Automatic Seg-
mentation (MAU) tier of the BAS Partiture Format (BPF) from 1/4
of TRAIN, Re-estimation and splitting mixtures after 6 iterations
on total TRAIN, testing after every two iterations on DEV, weight
of language model fixed to 6.5; beam search width 100.0.

Table 1 shows the recognition results of a plain HMM phone
recognizer which was trained both on monophones and triphones
(also across words).

Table 1: For comparison: Phoneme error rate for plain HMMs
System training phoneme error rate epochs

set size on the test set

Monophone full 34.29% 52
Triphone crossword full 35.49% 37

Monophones contain 512 Gaussian mixtures per state. Tri-
phones have the same number of parameters as the monophone
system, 8 mixtures per state and are trained also across word
boundaries. HMMs were trained on the full training set.

3. LSTM
“Long Short-Term Memory” [2] is a general purpose algorithm
for extracting statistical regularities from noisy time series. It
learns from scratch, typically with more adjustable parameters

1One turn in the VM database has about 22.8 words in average.
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weights), a larger search space, and less initial bias [10] than
Ms, which incorporate prior linguistic knowledge.

Bidirectional LSTM (BLSTM)

output of typical RNNs is based on the complete history of
ious inputs. However, there are many sequence processing
s where future inputs are also useful because reverse corre-
ns exist. In speech, for example, the articulatory system is

ady preparing future utterances as it shapes the current one. A
tion is bidirectional training [11, 12]: the input is presented
ards and backwards to two separate recurrent nets, both of

ch are connected to the same output layer. In this way, errors
be injected as normal and backpropagated through the nets.

rent results with BLSTM [5] show that it outperforms normal
M, as well as previous bidirectional RNNs on speech recogni-
tasks.

Retraining with bidirectional LSTM

in-depth investigation of retraining with LSTM [4] (i.e. pre-
ing new data to an already trained network) showed that LSTM
apable of fast and effective relearning on speakers with widely
ing vocal characteristics. The net was trained and successively

ained on disjoint subsets of the TIDIGITS database. The re-
ing time and difficulty diminished with repetition, and the net
able to transfer knowledge across several datasets. The final

ormance of the net was generally raised by having been previ-
ly trained on different datasets, and this improvement persisted
r multiple retrainings.

. The Psycho-Computational Model of the
Sound System Acquisition (PCMSA)

ently, we developed a Psycho-Computational Model of the
nd System Acquisition (PCMSA) [7]. This is based on studies
rst language acquisition [13, 14, 15, 16, 17, 18] which claim
children start using their sound system with the onset of vocal
ures - sounds or sound sequences produced with consistency
he child in different situations.
el contrasts start between the open front /E/ and the closed
t /I/ followed by a third degree of opening or by a back /u:/
finish by /e/ vs. /E/ vs /E@/. First only /i:/ and /E/ are dis-
uished, in a second step we find the distinction also with /a/
/u:/, the third to fifth step deal with distinguishing phoneti-

y closer phonemes until the full vowel distribution in the last
angle is reached.
consonantal system is developed with regard to Manner of

culation: (Distinctions are mostly within category, i.e. within
ls, within plosives, rather than cross-category, e.g. fricatives
plosives/nasals.), Place of articulation: (Generally labial-

al contrasts occur before contrasts with velars. Distinction
een apicals are last to be developed.), and Voicing: (Given

same manner and place of articulation voicing occurs when the
al cords in the larynx vibrate. In the language acquisition task
dren first learn the voiceless counterparts in most languages.).
erally, it can be said that the more back the place of articula-
the later the acquisition of the sound. Also, according to the
ed-voiceless contrast it can be seen that voiceless counterparts
learnt after the voiced sounds and that nasals and liquids are
ned before plosives, affricates and fricatives (in this order!).
o the distinction between perceptual similar sounds (usually
ustically similar) is learned quite late.



5. Experimental setup
Preliminary experiments with LSTM standard nets with 25, 50,
100 and 200 blocks (2 cells each) showed that although the du-
ration of the epochs doubled each time, comparable results oc-
curred in far fewer epochs. Nevertheless all experiments con-
verged at around 50% framewise phoneme correctness. When
comparing LSTM bidirectional nets to standard nets with compa-
rable weights (50 000) we found that BLSTM needs less epochs
to obtain comparable results to standard nets and reaches higher
framewise phoneme correctness (58.87%). Both bidirectional and
standard nets reach their peak around the 120th epoch.

5.1. Randomly chosen subsets for BLSTM training
Based on these findings we used a two-step retraining procedure as
follows: LSTM training and retraining sets were each around 1/4
of the whole VM training set. Both training and retraining set are
distinct from each other but were randomly chosen from the whole
training set. The whole VM test set was used. The framewise
phoneme error rate was calculated for all sounds of the test set and
for the vowels of the PCMSA subset. Our bidirectional LSTM
network contained two hidden LSTM layers (for the forward and
reverse nets), each with 200 blocks of 2 cells. It had 26 input nodes
and a softmax output layer containing 52 nodes. A cross entropy
objective function was used. The input layer was connected to the
hidden layers, both of which were connected to themselves and to
the output layer. There were 907112 weights in total. Note that
unlike HMMs BLSTM has no structural bias and more weights - a
disadvantage according to the bias-variance dilemma [10].

5.2. PCMSA vowel contrasts
The BLSTM net described above was also used to train and re-
train on the PCMSA subset. Preliminary experiments on a smaller
BLSTM net and single contrastive training on consonants and
vowels showed that the more periodical structure a sound has, the
easier to recognize for BLSTM. Therefore, we decided to concen-
trate on the initial vowel cluster of the human vowel acquisition
and trained our system subsequently on /E/ vs /i:/ according to
section 4:. In the experiment we trained on the single vowels and
retrained on the vowel contrasts described in [7] until the frame by
frame error on the development set improved insignificantly. Both
training and development subsets are a portion of the training and
development sets described in section 2.

6. Experimental results
Our experiments are divided into two main parts: The first gives
the plain LSTM classification for frame by frame recognition re-
sults. Part two shows the frame by frame recognition results of the
consecutive single vowel training and retraining on the PCMSA
vowel contrast and the frame by frame recognition results for the
PCMSA vowel contrast phonemes trained on the randomly chosen
subset. Both systems use the same test set. Table 2 shows that
BLSTM retraining led to a 5% improvement on the full test set.
Using 1/4 of the training set at a time greatly reduces total training
time.

Table 2: Recognition results: frame by frame phoneme error rate
for plain BLSTM

System training frame by frame epochs
set size phoneme error rate

on the test set

baseline 1/42 38.40% 50
retraining 1/42 33.36% 67
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Table 3 shows the main results of the PCMSA vowel contrast
ter and the randomly chosen subset of the BLSTM net.

le 3: Recognition results: frame by frame phoneme error rate
PCMSA vowel contrast
stem training frame by frame epochs

set size phoneme error rate
of /E/ - /i:/

on the test set

seline sequential3 29.60% 74
training contrast3 21.75% 71
ain BLSTM 1/42 37.70% 674

As can be seen in table 3 already a consecutive training on all
nds of the PCMSA initial vowel contrast cluster in the baseline
ws an improvement of 8.10% on the test set compared to the
omly retrained BLSTM. Note that the test set in both cases is

same subset of the test set described in 2 which includes only
vowels of the vowel contrast cluster /E/ - /i:/. Retraining on the

SA vowel contrast cluster results in another 7.85% reduction
he frame by frame phoneme error rate.

7. Predicting the phoneme error rate: an
extrapolation for a HMM-LSTM hybrid

approach
ough we cannot compare the framewise phoneme error of
TM directly with the phoneme error of the HMM we expect
a BLSTM-HMM hybrid (under construction) will outperform
plain BLSTM on frame by frame and plain HMMs on the

neme level, inheriting the best of both worlds, namely reduc-
of training material and training time (BLSTM), as well as

e built-in structural bias (HMMs). This expectation is encour-
d by experiments on read speech by Chen and Jamieson [19],
e [20], Waterhouse, Kershaw and Robinson [21], and Ele-
and Blomberg [22]. They all achieved better results on the

neme level using an ANN-HMM hybrid approach, as shown in
e 4 for framewise and phoneme error rates for several systems
arious corpora. improvement factor shows the relative ratio of
ewise and phoneme error. LIN stands for Linear Input Net-

k, MLIN for Mixtures of LINs for adaptation ( 2 = 2 experts;
4 experts). MLP stands for Multilayer Perceptron nets5.
As can be seen from table 4 the framewise errors are quite
for noisy input sequences (several microphones or enriched
background noise) as opposed to clean speech. The HMM
of the hybrids is able to drastically reduce the error on the

The portion of the baseline was randomly chosen. The portion for
ining is distinct from the baseline portion
The portion of the baseline includes only /E/ and /i:/. Training was
ential. The portion for retraining is distinct from the baseline portion.
cludes the vowel contrast cluster /E/ - /i:/ according to PCMSA.
The underlying BLSTM system is the retrained BLSTM of table 2
MLPs are supervised feedforward neural networks trained with the
dard backpropagation algorithm. With one or two hidden layers, they
approximate virtually any input-output(= the desired response) map.
y are widely used for pattern classification and can approximate the
ormance of optimal statistical classifiers in difficult problems.
Swedish speakers
MUM3 Task
clean speech: NUMBERS95
clean sp. no border: NUMBERS95
factory noise: ARPA 1995 H3 multiple unknown microphones
factory noise no border: NUMBERS95
TIMIT



Table 4: Framewise and phoneme errors on read speech corpora
System frame phoneme improvement

(plain (ANN-HMM factor
ANNs) hybrids)

Backprop[22]6 30.0% 24.5% 1.22
RNN 0 pass [21]7 22.8% 18.1% 1.26
LIN 1 pass [21]7 20.1% 16.5% 1.22
LIN 2 pass [21]7 19.9% 15.9% 1.25
MLIN 2 1 pass [21]7 19.2% 16.5% 1.16
MLIN 2 2 pass [21]7 18.9% 16.1% 1.17
MLIN 4 2 pass [21]7 18.2% 15.8% 1.15
MLIN 4 3 pass [21]7 18.0% 15.7% 1.15
MLP[20]8 28.97% 7.3% 3.97
MLP[20]9 29.80% 7.7% 3.87
MLP[20]10 42.84% 15.5% 2.76
MLP[20] 11 42.88% 15.0% 2.86
RNN [19] 12 26.3% 20.21% 1.30

phoneme level due to structural bias of the HMM. This means that
on unprompted speech with background noise, speaker overlaps
and other perturbations we can expect a much lower phoneme er-
ror. With the worst improvement factor (1.15) of table 4 we can
conservatively predict a phoneme error rate of 29.01% for a re-
trained BLSTM-HMM hybrid on VERBMOBIL ( 33.39% for the
standard BLSTM respectively). An optimistic calculation with the
best improvement factor (3.97) for read speech in table 4 would
give us 8.4% for the retrained BLSTM-HMM hybrid (9.67% for
the baseline respectively). If we do a similar extrapolation to
predict the phoneme error rate of the PCMSA driven subset, the
worst improvement factor (1.15) of table 4 would result in a con-
servative prediction of the phoneme error rate of 18,91% for a
retrained PCMSA-BLSTM-HMM hybrid ( 25,74% on the base-
line PCMSA-BLSTM-HMM hybrid, 32.78% for the randomly re-
trained BLSTM respectively). The best improvement factor (3.97)
for read speech in table 4 would result in optimistic prediction of
5.46% for the retrained PCMSA-BLSTM-HMM hybrid (7.46%
for the baseline PCMSA-BLSTM-HMM hybrid, 9,50% for the
randomly retrained BLSTM respectively).

8. Conclusions and outlook
We examined the retraining ability of LSTM recurrent nets in a
frame by frame phoneme classification task of unprompted speech.
We compared recognition results of a normally trained BLSTM
system to those of a retrained one. We adapted the experiment
by applying human language acquisition to BLSTM retraining.
Retraining both significantly reduced time costs and training set
size and improved recognition results. The contrastive BLSTM re-
training on the initial PCMSA vowel cluster showed that PCMSA
seems to be a reasonable method to make ANNs more sparse. An
extrapolation based on read speech promises significant additional
improvements on the phoneme level through a BLSTM-HMM hy-
brid. Future work extends a BLSTM-HMM hybrid on a contrastive
PCMSA retraining on the whole phonemic representation of a lan-
guage.
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